109 resultados para COMPLETE NUCLEOTIDE-SEQUENCE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low voltage-activated, or T-type, calcium currents are important regulators of neuronal and muscle excitability, secretion, and possibly cell growth and differentiation. The gene (or genes) coding for the pore-forming subunit of low voltage-activated channel proteins has not been unequivocally identified. We have used reverse transcription–PCR to identify partial clones from rat atrial myocytes that share high homology with a member of the E class of calcium channel genes. Antisense oligonucleotides targeting one of these partial clones (raE1) specifically block the increase in T-current density that normally results when atrial myocytes are treated with insulin-like growth factor 1 (IGF-1). Antisense oligonucleotides targeting portions of the neuronal rat α1E sequence, which are not part of the clones detected in atrial tissue, also block the IGF-1-induced increase in T-current, suggesting that the high homology to α1E seen in the partial clone may be present in the complete atrial sequence. The basal T-current expressed in these cells is also blocked by antisense oligonucleotides, which is consistent with the notion that IGF-1 up-regulates the same gene that encodes the basal current. These results support the hypothesis that a member of the E class of calcium channel genes encodes a low voltage-activated calcium channel in atrial myocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA polymerases contain active sites that are structurally superimposable and highly conserved in sequence. To assess the significance of this preservation and to determine the mutational burden that active sites can tolerate, we randomly mutated a stretch of 13 amino acids within the polymerase catalytic site (motif A) of Thermus aquaticus DNA polymerase I. After selection, by using genetic complementation, we obtained a library of approximately 8,000 active mutant DNA polymerases, of which 350 were sequenced and analyzed. This is the largest collection of physiologically active polymerase mutants. We find that all residues of motif A, except one (Asp-610), are mutable while preserving wild-type activity. A wide variety of amino acid substitutions were obtained at sites that are evolutionarily maintained, and conservative substitutions predominate at regions that stabilize tertiary structures. Several mutants exhibit unique properties, including DNA polymerase activity higher than the wild-type enzyme or the ability to incorporate ribonucleotide analogs. Bacteria dependent on these mutated polymerases for survival are fit to replicate repetitively. The high mutability of the polymerase active site in vivo and the ability to evolve altered enzymes may be required for survival in environments that demand increased mutagenesis. The inherent substitutability of the polymerase active site must be addressed relative to the constancy of nucleotide sequence found in nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Drosophila nervous system, the glial cells missing gene (gcm) is transiently expressed in glial precursors to switch their fate from the neuronal default to glia. It encodes a novel 504-amino acid protein with a nuclear localization signal. We report here that the GCM protein is a novel DNA-binding protein and that its DNA-binding activity is localized in the N-terminal 181 amino acids. It binds with high specificity to the nucleotide sequence, (A/G)CCCGCAT, which is a novel sequence among known targets of DNA-binding proteins. Eleven such GCM-binding sequences are found in the 5′ upstream region of the repo gene, whose expression in early glial cells is dependent on gcm. This suggests that the GCM protein is a transcriptional regulator directly controlling repo. We have also identified homologous genes from human and mouse whose products share a highly conserved N-terminal region with Drosophila GCM. At least one of these was shown to have DNA-binding activity similar to that of GCM. By comparing the deduced amino acid sequences of these gene products, we were able to define the “gcm motif,” an evolutionarily conserved motif with DNA-binding activity. By PCR amplification, we obtained evidence for the existence of additional gcm-motif genes in mouse as well as in Drosophila. The gcm-motif, therefore, forms a family of novel DNA-binding proteins, and may function in various aspects of cell fate determination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein synthesis is believed to be initiated with the amino acid methionine because the AUG translation initiation codon of mRNAs is recognized by the anticodon of initiator methionine transfer RNA. A group of positive-stranded RNA viruses of insects, however, lacks an AUG translation initiation codon for their capsid protein gene, which is located at the downstream part of the genome. The capsid protein of one of these viruses, Plautia stali intestine virus, is synthesized by internal ribosome entry site-mediated translation. Here we report that methionine is not the initiating amino acid in the translation of the capsid protein in this virus. Its translation is initiated with glutamine encoded by a CAA codon that is the first codon of the capsid-coding region. The nucleotide sequence immediately upstream of the capsid-coding region interacts with a loop segment in the stem–loop structure located 15–43 nt upstream of the 5′ end of the capsid-coding region. The pseudoknot structure formed by this base pair interaction is essential for translation of the capsid protein. This mechanism for translation initiation differs from the conventional one in that the initiation step controlled by the initiator methionine transfer RNA is not necessary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generation time of HIV Type 1 (HIV-1) in vivo has previously been estimated using a mathematical model of viral dynamics and was found to be on the order of one to two days per generation. Here, we describe a new method based on coalescence theory that allows the estimate of generation times to be derived by using nucleotide sequence data and a reconstructed genealogy of sequences obtained over time. The method is applied to sequences obtained from a long-term nonprogressing individual at five sampling occasions. The estimate of viral generation time using the coalescent method is 1.2 days per generation and is close to that obtained by mathematical modeling (1.8 days per generation), thus strengthening confidence in estimates of a short viral generation time. Apart from the estimation of relevant parameters relating to viral dynamics, coalescent modeling also allows us to simulate the evolutionary behavior of samples of sequences obtained over time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insects in the order Plecoptera (stoneflies) use a form of two-dimensional aerodynamic locomotion called surface skimming to move across water surfaces. Because their weight is supported by water, skimmers can achieve effective aerodynamic locomotion even with small wings and weak flight muscles. These mechanical features stimulated the hypothesis that surface skimming may have been an intermediate stage in the evolution of insect flight, which has perhaps been retained in certain modern stoneflies. Here we present a phylogeny of Plecoptera based on nucleotide sequence data from the small subunit rRNA (18S) gene. By mapping locomotor behavior and wing structural data onto the phylogeny, we distinguish between the competing hypotheses that skimming is a retained ancestral trait or, alternatively, a relatively recent loss of flight. Our results show that basal stoneflies are surface skimmers, and that various forms of surface skimming are distributed widely across the plecopteran phylogeny. Stonefly wings show evolutionary trends in the number of cross veins and the thickness of the cuticle of the longitudinal veins that are consistent with elaboration and diversification of flight-related traits. These data support the hypothesis that the first stoneflies were surface skimmers, and that wing structures important for aerial flight have become elaborated and more diverse during the radiation of modern stoneflies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complete DNA sequence of Pseudomonas aeruginosa provides an opportunity to apply functional genomics to a major human pathogen. A comparative genomics approach combined with genetic footprinting was used as a strategy to identify genes required for viability in P. aeruginosa. Use of a highly efficient in vivo mariner transposition system in P. aeruginosa facilitated the analysis of candidate genes of this class. We have developed a rapid and efficient allelic exchange system by using the I-SceI homing endonuclease in conjunction with in vitro mariner mutagenesis to generate mutants within targeted regions of the P. aeruginosa chromosome for genetic footprinting analyses. This technique for generating transposon insertion mutants should be widely applicable to other organisms that are not naturally transformable or may lack well developed in vivo transposition systems. We tested this system with three genes in P. aeruginosa that have putative essential homologs in Haemophilus influenzae. We show that one of three H. influenzae essential gene homologs is needed for growth in P. aeruginosa, validating the practicality of this comparative genomics strategy to identify essential genes in P. aeruginosa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homologous recombination hotspots increase the frequency of recombination in nearby DNA. The M26 hotspot in the ade6 gene of Schizosaccharomyces pombe is a meiotic hotspot with a discrete, cis-acting nucleotide sequence (5′-ATGACGT-3′) defined by extensive mutagenesis. A heterodimeric M26 DNA binding protein, composed of subunits Mts1 and Mts2, has been identified and purified 40,000-fold. Cloning, disruption, and genetic analyses of the mts genes demonstrate that the Mts1/Mts2 heterodimer is essential for hotspot activity. This provides direct evidence that a specific trans-acting factor, binding to a cis-acting site with a unique nucleotide sequence, is required to activate this meiotic hotspot. Intriguingly, the Mts1/Mts2 protein subunits are identical to the recently described transcription factors Atf1 (Gad7) and Pcr1, which are required for a variety of stress responses. However, we report differential dependence on the Mts proteins for hotspot activation and stress response, suggesting that these proteins are multifunctional and have distinct activities. Furthermore, ade6 mRNA levels are equivalent in hotspot and nonhotspot meioses and do not change in mts mutants, indicating that hotspot activation is not a consequence of elevated transcription levels. These findings suggest an intimate but separable link between the regulation of transcription and meiotic recombination. Other studies have recently shown that the Mts1/Mts2 protein and M26 sites are involved in meiotic recombination elsewhere in the S. pombe genome, suggesting that these factors help regulate the timing and distribution of homologous recombination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a fluorescence-based directed termination PCR (fluorescent DT–PCR) that allows accurate determination of actual sequence changes without dideoxy DNA sequencing. This is achieved using near infrared dye-labeled primers and performing two PCR reactions under low and unbalanced dNTP concentrations. Visualization of resulting termination fragments is accomplished with a dual dye Li-cor DNA sequencer. As each DT–PCR reaction generates two sets of terminating fragments, a pair of complementary reactions with limiting dATP and dCTP collectively provide information on the entire sequence of a target DNA, allowing an accurate determination of any base change. Blind analysis of 78 mutants of the supF reporter gene using fluorescent DT–PCR not only correctly determined the nature and position of all types of substitution mutations in the supF gene, but also allowed rapid scanning of the signature sequences among identical mutations. The method provides simplicity in the generation of terminating fragments and 100% accuracy in mutation characterization. Fluorescent DT–PCR was successfully used to generate a UV-induced spectrum of mutations in the supF gene following replication on a single plate of human DNA repair-deficient cells. We anticipate that the automated DT–PCR method will serve as a cost-effective alternative to dideoxy sequencing in studies involving large-scale analysis for nucleotide sequence changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High throughput genome (HTG) and expressed sequence tag (EST) sequences are currently the most abundant nucleotide sequence classes in the public database. The large volume, high degree of fragmentation and lack of gene structure annotations prevent efficient and effective searches of HTG and EST data for protein sequence homologies by standard search methods. Here, we briefly describe three newly developed resources that should make discovery of interesting genes in these sequence classes easier in the future, especially to biologists not having access to a powerful local bioinformatics environment. trEST and trGEN are regularly regenerated databases of hypothetical protein sequences predicted from EST and HTG sequences, respectively. Hits is a web-based data retrieval and analysis system providing access to precomputed matches between protein sequences (including sequences from trEST and trGEN) and patterns and profiles from Prosite and Pfam. The three resources can be accessed via the Hits home page (http://hits.isb-sib.ch).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141–147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Symbiotic associations with microorganisms are pivotal in many insects. Yet, the functional roles of obligate symbionts have been difficult to study because it has not been possible to cultivate these organisms in vitro. The medically important tsetse fly (Diptera: Glossinidae) relies on its obligate endosymbiont, Wigglesworthia glossinidia, a member of the Enterobacteriaceae, closely related to Escherichia coli, for fertility and possibly nutrition. We show here that the intracellular Wigglesworthia has a reduced genome size smaller than 770 kb. In an attempt to understand the composition of its genome, we used the gene arrays developed for E. coli. We were able to identify 650 orthologous genes in Wigglesworthia corresponding to ≈85% of its genome. The arrays were also applied for expression analysis using Wigglesworthia cDNA and 61 gene products were detected, presumably coding for some of its most abundant products. Overall, genes involved in cell processes, DNA replication, transcription, and translation were found largely retained in the small genome of Wigglesworthia. In addition, genes coding for transport proteins, chaperones, biosynthesis of cofactors, and some amino acids were found to comprise a significant portion, suggesting an important role for these proteins in its symbiotic life. Based on its expression profile, we predict that Wigglesworthia may be a facultative anaerobic organism that utilizes ammonia as its major source of nitrogen. We present an application of E. coli gene arrays to obtain broad genome information for a closely related organism in the absence of complete genome sequence data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbonic anhydrase (CA) (EC 4.2.1.1) enzymes catalyze the reversible hydration of CO2, a reaction that is important in many physiological processes. We have cloned and sequenced a full-length cDNA encoding an intracellular β-CA from the unicellular green alga Coccomyxa. Nucleotide sequence data show that the isolated cDNA contains an open reading frame encoding a polypeptide of 227 amino acids. The predicted polypeptide is similar to β-type CAs from Escherichia coli and higher plants, with an identity of 26% to 30%. The Coccomyxa cDNA was overexpressed in E. coli, and the enzyme was purified and biochemically characterized. The mature protein is a homotetramer with an estimated molecular mass of 100 kD. The CO2-hydration activity of the Coccomyxa enzyme is comparable with that of the pea homolog. However, the activity of Coccomyxa CA is largely insensitive to oxidative conditions, in contrast to similar enzymes from most higher plants. Fractionation studies further showed that Coccomyxa CA is extrachloroplastic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.