34 resultados para Blood-vessels


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulmonary neuroendocrine cells are localized predominantly at airway branchpoints. Previous work showed that gastrin-releasing peptide (GRP), a major pulmonary bombesin-like peptide, occurred in neuroendocrine cells exclusively in branching human fetal airways. We now demonstrate that GRP and GRP receptor genes are expressed in fetal mouse lung as early as embryonic day 12 (E12), when lung buds are beginning to branch. By in situ hybridization, GRP receptor transcripts were at highest levels in mesenchymal cells at cleft regions of branching airways and blood vessels. To explore the possibility that bombesin-like peptides might play a role in branching morphogenesis, E12 lung buds were cultured for 48 hr in serum-free medium. In the presence of 0.10-10 microM bombesin, branching was significantly augmented as compared with control cultures, with a peak of 94% above control values at 1 microM (P < 0.005). The bombesin receptor antagonist [Leu13- psi(CH2NH)Leu14]bombesin alone (100 nM) had no effect on baseline branching but completely abolished bombesin-induced branching. A bombesin-related peptide, [Leu8]phyllolitorin also increased branching (65% above control values at 10 nM, P < 0.005). [Leu8]Phyllolitorin also significantly augmented thymidine incorporation in cultured lung buds. Fibronectin, which is abundant at branchpoints, induces GRP gene expression in undifferentiated cell lines. These observations suggest that BLPs secreted by pulmonary neuroendocrine cells may contribute to lung branching morphogenesis. Furthermore, components of branchpoints may induce pulmonary neuroendocrine cell differentiation as part of a positive feedback loop, which could account in part for the high prevalence of these cells at branchpoints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inflammation is a primary pathological process. The development of an inflammatory reaction involves the movement of white blood cells through the endothelial lining of blood vessels into tissues. This process of transendothelial cell migration of neutrophils has been shown to involve neutrophil beta 2 integrins (CD18) and endothelial cell platelet-endothelium cell adhesion molecules (PECAM-1; CD31). We now show that F(ab')2 fragments of the monoclonal antibody B6H12 against integrin-associated protein (IAP) blocks the transendothelial migration of neutrophils stimulated by an exogenous gradient of the chemokine interleukin 8 (IL-8; 60% inhibition), by the chemotactic peptide N-formyl-methionylleucylphenylalanine (FMLP; 76% inhibition), or by the activation of the endothelium by the cytokine tumor necrosis factor alpha (98% inhibition). The antibody has two mechanisms of action: on neutrophils it prevents the chemotactic response to IL-8 and FMLP, and on endothelium it prevents an unknown but IL-8-independent process. Blocking antibodies to IAP do not alter the expression of adhesion proteins or production of IL-8 by endothelial cells, and thus the inhibition of neutrophil transendothelial migration is selective. These data implicate IAP as the third molecule essential for neutrophil migration through endothelium into sites of inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood vessel elasticity is important to physiology and clinical problems involving surgery, angioplasty, tissue remodeling, and tissue engineering. Nonlinearity in blood vessel elasticity in vivo is important to the formation of solitons in arterial pulse waves. It is well known that the stress–strain relationship of the blood vessel is nonlinear in general, but a controversy exists on how nonlinear it is in the physiological range. Another controversy is whether the vessel wall is biaxially isotropic. New data on canine aorta were obtained from a biaxial testing machine over a large range of finite strains referred to the zero-stress state. A new pseudo strain energy function is used to examine these questions critically. The stress–strain relationship derived from this function represents the sum of a linear stress–strain relationship and a definitely nonlinear relationship. This relationship fits the experimental data very well. With this strain energy function, we can define a parameter called the degree of nonlinearity, which represents the fraction of the nonlinear strain energy in the total strain energy per unit volume. We found that for the canine aorta, the degree of nonlinearity varies from 5% to 30%, depending on the magnitude of the strains in the physiological range. In the case of canine pulmonary artery in the arch region, Debes and Fung [Debes, J. C. & Fung, Y. C.(1995) Am. J. Physiol. 269, H433–H442] have shown that the linear regime of the stress–strain relationship extends from the zero-stress state to the homeostatic state and beyond. Both vessels, however, are anisotropic in both the linear and nonlinear regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue factor (TF) is the cellular receptor for coagulation factor VI/VIIa and is the membrane-bound glycoprotein that is generally viewed as the primary physiological initiator of blood coagulation. To define in greater detail the physiological role of TF in development and hemostasis, the TF gene was disrupted in mice. Mice heterozygous for the inactivated TF allele expressed approximately half the TF activity of wild-type mice but were phenotypically normal. However, homozygous TF-/- pups were never born in crosses between heterozygous mice. Analysis of mid-gestation embryos showed that TF-/- embryos die in utero between days 8.5 and 10.5. TF-/- embryos were morphologically distinct from their TF+/+ and TF+/- littermates after day 9.5 in that they were pale, edematous, and growth retarded. Histological studies showed that early organogenesis was normal. The initial failure in TF-/- embryos appeared to be hemorrhaging, leading to the leakage of embryonic red cells from both extraembryonic and embryonic vessels. These studies indicate that TF plays an indispensable role in establishing and/or maintaining vascular integrity in the developing embryo at a time when embryonic and extraembryonic vasculatures are fusing and blood circulation begins.