42 resultados para BUNDLE-FORMING PILI
Resumo:
Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with a construct encoding the mature form of tobacco (Nicotiana tabacum L.) carbonic anhydrase (CA) under the control of a strong constitutive promoter. Expression of the tobacco CA was detected in transformant whole-leaf and bundle-sheath cell (bsc) extracts by immunoblot analysis. Whole-leaf extracts from two CA-transformed lines demonstrated 10% to 50% more CA activity on a ribulose-1,5-bisphosphate carboxylase/oxygenase-site basis than the extracts from transformed, nonexpressing control plants, whereas 3 to 5 times more activity was measured in CA transformant bsc extracts. This increased CA activity resulted in plants with moderately reduced rates of CO2 assimilation (A) and an appreciable increase in C isotope discrimination compared with the controls. With increasing O2 concentrations up to 40% (v/v), a greater inhibition of A was found for transformants than for wild-type plants; however, the quantum yield of photosystem II did not differ appreciably between these two groups over the O2 levels tested. The quantum yield of photosystem II-to-A ratio suggested that at higher O2 concentrations, the transformants had increased rates of photorespiration. Thus, the expression of active tobacco CA in the cytosol of F. bidentis bsc and mesophyll cells perturbed the C4 CO2-concentrating mechanism by increasing the permeability of the bsc to inorganic C and, thereby, decreasing the availability of CO2 for photosynthetic assimilation by ribulose-1,5-bisphosphate carboxylase/oxygenase.
Resumo:
The intercellular distribution of the enzymes and metabolites of assimilatory sulfate reduction and glutathione synthesis was analyzed in maize (Zea mays L. cv LG 9) leaves. Mesophyll cells and strands of bundle-sheath cells from second leaves of 11-d-old maize seedlings were obtained by two different mechanical-isolation methods. Cross-contamination of cell preparations was determined using ribulose bisphosphate carboxylase (EC 4.1.1.39) and nitrate reductase (EC 1.6.6.1) as marker enzymes for bundle-sheath and mesophyll cells, respectively. ATP sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase activities were detected almost exclusively in the bundle-sheath cells, whereas GSH synthetase (EC 6.3.2.3) and cyst(e)ine, γ-glutamylcysteine, and glutathione were located predominantly in the mesophyll cells. Feeding experiments using [35S]sulfate with intact leaves indicated that cyst(e)ine was the transport metabolite of reduced sulfur from bundle-sheath to mesophyll cells. This result was corroborated by tracer experiments, which showed that isolated bundle-sheath strands fed with [35S]sulfate secreted radioactive cyst(e)ine as the sole thiol into the resuspending medium. The results presented in this paper show that assimilatory sulfate reduction is restricted to the bundle-sheath cells, whereas the formation of glutathione takes place predominantly in the mesophyll cells, with cyst(e)ine functioning as a transport metabolite between the two cell types.
Resumo:
Mice lacking the complex subset of N-glycans due to inactivation of the Mgat1 gene die at mid-gestation, making it difficult to identify specific biological functions for this class of cell surface carbohydrates. To circumvent this embryonic lethality and to uncover tissue-specific functions for complex N-glycans, WW6 embryonic stem cells with inactivated Mgat1 alleles were tracked in chimeric embryos. The Mgat1 gene encodes N-acetylglucosaminyltransferase I (Glc-NAc-TI; EC 2.4.1.101), the transferase that initiates the synthesis of complex N-glycans. WW6 cells carry an inert beta-globin transgene that allows their identification in chimeras by DNA-DNA in situ hybridization. Independent Mgat1-/- and Mgat1+/- mutant WW6 isolates contributed like parent WW6 cells to the tissues of embryonic day (E) 10.5 to E16.5 chimeras. However, a cell type-specific difference was observed in lung. Homozygous null Mgat1-/- WW6 cells did not contribute to the epithelial layer in more than 99% bronchi. This deficiency was corrected by transfection of a Mgat1 transgene. Interestingly, heterozygous Mgat1+/- WW6 cells were also deficient in populating the layer of bronchial epithelium. Furthermore, examination of lung bud in E9.5 Mgat1-/- mutant embryos showed complete absence of an organized epithelial cell layer in the bronchus. Thus, complex N-glycans are required to form a morphologically recognizable bronchial epithelium, revealing an in vivo, cell type-specific function for this class of N-glycans.
Resumo:
The mammalian olfactory epithelium (OE) supports continual neurogenesis throughout life, suggesting that a neuronal stem cell exists in this system. In tissue culture, however, the capacity of the OE for neurogenesis ceases after a few days. In an attempt to identify conditions that support the survival of neuronal stem cells, a population of neuronal progenitors was isolated from embryonic mouse OE and cultured in defined serum-free medium. The vast majority of cells rapidly gave rise to neurons, which died shortly thereafter. However, when purified progenitors were co-cultured with cells derived from the stroma underlying the OE, a small subpopulation (0.07-0.1%) gave rise to proliferative colonies. A morphologically identifiable subset of these colonies generated new neurons as late as 7 days in vitro. Interestingly, development of these neuronal colonies was specifically inhibited when purified progenitors were plated onto stromal feeder cells in the presence of a large excess of differentiated OE neurons. These results indicate that a rare cell type, with the potential to undergo prolonged neurogenesis, can be isolated from mammalian OE and that stroma-derived factors are important in supporting neurogenesis by this cell. The data further suggest that differentiated neurons provide a signal that feeds back to inhibit production of new neurons by their own progenitors.
Resumo:
Cleavage of membrane-associated proteins with the release of biologically active macromolecules is an emerging theme in biology. However, little is known about the nature and regulation of the involved proteases or about the physiological inducers of the shedding process. We here report that rapid and massive shedding of the interleukin 6 receptor (IL-6R) and the lipopolysaccharide receptor (CD14) occurs from primary and transfected cells attacked by two prototypes of pore-forming bacterial toxins, streptolysin O and Escherichia coli hemolysin. Shedding is not induced by an streptolysin O toxin mutant which retains cell binding capacity but lacks pore-forming activity. The toxin-dependent cleavage site of the IL-6R was mapped to a position close to, but distinct from, that observed after stimulation with phorbol myristate acetate. Soluble IL-6R that was shed from toxin-treated cells bound its ligand and induced an IL-6-specific signal in cells that primarily lacked the IL-6R. Transsignaling by soluble IL-6R and soluble CD14 is known to dramatically broaden the spectrum of host cells for IL-6 and lipopolysaccharide, and is thus an important mechanism underlying their systemic inflammatory effects. Our findings uncover a novel mechanism that can help to explain the long-range detrimental action of pore-forming toxins in the host organism.
Resumo:
Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.
Resumo:
Leaves of the C4 plant maize have two major types of photosynthetic cells: a ring of five large bundle sheath cells (BSC) surrounds each vascular bundle and smaller mesophyll cells (MC) lie between the cylinders of bundle sheath cells. The enzyme ribulose bisphosphate carboxylase/oxygenase is encoded by nuclear rbcS and chloroplast rbcL genes. It is not present in MC but is abundant in adjacent BSC of green leaves. As reported previously, the separate regions of rbcS-m3, which are required for stimulating transcription of the gene in BSC and for suppressing expression of reporter genes in MC, were identified by an in situ expression assay; expression was not suppressed in MC until after leaves of dark-grown seedlings had been illuminated for 24 h. Now we have found that transient expression of rbcS-m3 reporter genes is stimulated in BSC via a red/far-red reversible phytochrome photoperception and signal transduction system but that blue light is required for suppressing rbcS-m3 reporter gene expression in MC. Blue light is also required for the suppression system to develop in MC. Thus, the maize gene rbcS-m3 contains certain sequences that are responsive to a phytochrome photoperception and signal transduction system and other regions that respond to a UVA/blue light photoperception and signal transduction system. Various models of "coaction" of plant photoreceptors have been advanced; these observations show the basis for one type of coaction.
Resumo:
In many filamentous cyanobacteria nitrogen fixation occurs in differentiated cells called heterocysts. Filamentous strains that do not form heterocysts may fix nitrogen in vegetative cells, primarily under anaerobic conditions. We describe here two functional Mo-dependent nitrogenases in a single organism, the cyanobacterium Anabaena variabilis. Using a lacZ reporter with a fluorescent beta-galactoside substrate for in situ localization of gene expression, we have shown that the two clusters of nif genes are expressed independently. One nitrogenase functions only in heterocysts under either aerobic or anaerobic growth conditions, whereas the second nitrogenase functions only under anaerobic conditions in vegetative cells and heterocysts. Differences between the two nif clusters suggest that the nitrogenase that is expressed in heterocysts is developmentally regulated while the other is regulated by environmental factors.
Resumo:
The Gram-negative bacterial pathogen Neisseria gonorrhoeae is naturally competent for transformation with species-related DNA. We show here that two phase-variable pilus-associated proteins, the major pilus subunit (pilin, or PilE) and PilC, a factor known to function in the assembly and adherence of gonococcal pili, are essential for transformation competence. The PilE and PilC proteins are necessary for the conversion of linearized plasmid DNA carrying the Neisseria-specific DNA uptake signal into a DNase-resistant form. The biogenesis of typical pilus fibers is neither essential nor sufficient for this process. DNA uptake deficiency of defined piliated pilC1,2 double mutants can be complemented by expression of a cloned pilC2 gene in trans. The PilC defect can also be restored by the addition of purified PilC protein, or better, pili containing PilC protein, to the mutant gonococci. Our data suggest that the two phase-variable Pil proteins act on the bacterial cell surface and cooperate in DNA recognition and/or outer membrane translocation.
Resumo:
The cyc1-512 mutation is a 38-bp deletion in the 3' untranslated region of the CYC1 gene, which encodes iso-1-cytochrome c in Saccharomyces cerevisiae. This deletion caused a 90% reduction in the levels of the CYC1 mRNA and protein because of the absence of the normal 3' end-forming signal. Although the 3' end-forming signal was not defined by previous analyses, we report that concomitant alteration by base-pair substitution of three 3' end-forming signals within and adjacent to the 38-bp region produced the same phenotype as the cyc1-512 mutation. Furthermore, these signals appear to be related to the previously identified 3' end-forming signal TATATA. A computer analysis revealed that TATATA and related sequences were present in the majority of 3' untranslated regions of yeast genes. Although TATATA may be the strongest and most frequently used signal in yeast genes, the CYC1+ gene concomitantly employed the weaker signals TT-TATA, TATGTT, and TATTTA, resulting in a strong signal.
Resumo:
Interferon alpha induction of transcription operates through interferon-stimulated-gene factor 3 (ISGF), a transcription factor two components of which are members of the newly characterized Stat family of transcription factors. Interferon alpha induces tyrosine phosphorylation of Stat1 and Stat2 proteins that associate and, together with a 48-kDa protein, form ISGF3. Evidence is presented that a heterodimer of Stat1 and Stat2 is present in ISGF3 and that Stat1 and the 48-kDa protein make precise contact, while Stat2 makes general contact, with the interferon-stimulated response element, the binding site of the ISGF3.
Resumo:
Stathmin is a ubiquitous, cytosolic 19-kDa protein, which is phosphorylated on up to four sites in response to many regulatory signals within cells. Its molecular characterization indicates a functional organization including an N-terminal regulatory domain that bears the phosphorylation sites, linked to a putative alpha-helical binding domain predicted to participate in coiled-coil, protein-protein interactions. We therefore proposed that stathmin may play the role of a relay integrating diverse intracellular regulatory pathways; its action on various target proteins would be a function of its combined phosphorylation state. To search for such target proteins, we used the two-hybrid screen in yeast, with stathmin as a "bait." We isolated and characterized four cDNAs encoding protein domains that interact with stathmin in vivo. One of the corresponding proteins was identified as BiP, a member of the hsp70 heat-shock protein family. Another is a previously unidentified, putative serine/threonine kinase, KIS, which might be regulated by stathmin or, more likely, be part of the kinases controlling its phosphorylation state. Finally, two clones code for subdomains of two proteins, CC1 and CC2, predicted to form alpha-helices participating in coiled-coil interacting structures. Their isolation by interaction screening further supports our model for the regulatory function of stathmin through coiled-coil interactions with diverse downstream targets via its presumed alpha-helical binding domain. The molecular and biological characterization of KIS, CC1, and CC2 proteins will give further insights into the molecular functions and mechanisms of action of stathmin as a relay of integrated intracellular regulatory pathways.