52 resultados para BTemporal Lobe Epilepsycopa monnieri
Resumo:
This article reviews recent studies of memory systems in humans and nonhuman primates. Three major conclusions from recent work are that (i) the capacity for nondeclarative (nonconscious) learning can now be studied in a broad array of tasks that assess classification learning, perceptuomotor skill learning, artificial grammar learning, and prototype abstraction; (ii) cortical areas adjacent to the hippocampal formation, including entorhinal, perirhinal, and parahippocampal cortices, are an essential part of the medial temporal lobe memory system that supports declarative (conscious) memory; and (iii) in humans, bilateral damage limited to the hippocampal formation is nevertheless sufficient to produce severe anterograde amnesia and temporally graded retrograde amnesia covering as much as 25 years.
Resumo:
Memory illusions and distortions have long been of interest to psychology researchers studying memory, but neuropsychologists and neuroscientists have paid relatively little attention to them. This article attempts to lay the foundation for a cognitive neuroscience analysis of memory illusions and distortions by reviewing relevant evidence from a patient with a right frontal lobe lesion, patients with amnesia produced by damage to the medial temporal lobes, normal aging, and healthy young volunteers studied with functional neuroimaging techniques. Particular attention is paid to the contrasting roles of prefrontal cortex and medial temporal lobe structures in accurate and illusory remembering. Converging evidence suggests that the study of illusory memories can provide a useful tool for delineating the brain processes and systems involved in constructive aspects of remembering.
Resumo:
The auditory system of monkeys includes a large number of interconnected subcortical nuclei and cortical areas. At subcortical levels, the structural components of the auditory system of monkeys resemble those of nonprimates, but the organization at cortical levels is different. In monkeys, the ventral nucleus of the medial geniculate complex projects in parallel to a core of three primary-like auditory areas, AI, R, and RT, constituting the first stage of cortical processing. These areas interconnect and project to the homotopic and other locations in the opposite cerebral hemisphere and to a surrounding array of eight proposed belt areas as a second stage of cortical processing. The belt areas in turn project in overlapping patterns to a lateral parabelt region with at least rostral and caudal subdivisions as a third stage of cortical processing. The divisions of the parabelt distribute to adjoining auditory and multimodal regions of the temporal lobe and to four functionally distinct regions of the frontal lobe. Histochemically, chimpanzees and humans have an auditory core that closely resembles that of monkeys. The challenge for future researchers is to understand how this complex system in monkeys analyzes and utilizes auditory information.
Overexpression of a Homeobox Gene, LeT6, Reveals Indeterminate Features in the Tomato Compound Leaf1
Resumo:
The cultivated tomato (Lycopersicon esculentum) has a unipinnate compound leaf. In the developing leaf primordium, major leaflet initiation is basipetal, and lobe formation and early vascular differentiation are acropetal. We show that engineered alterations in the expression of a tomato homeobox gene, LeT6, can cause dramatic changes in leaf morphology. The morphological states are variable and unstable and the phenotypes produced indicate that the tomato leaf has an inherent level of indeterminacy. This is manifested by the production of multiple orders of compounding in the leaf, by numerous shoot, inflorescence, and floral meristems on leaves, and by the conversion of rachis-petiolule junctions into “axillary” positions where floral buds can arise. Overexpression of a heterologous homeobox transgene, kn1, does not produce such phenotypic variability. This indicates that LeT6 may differ from the heterologous kn1 gene in the effects manifested on overexpression, and that 35S-LeT6 plants may be subject to alterations in expression of both the introduced and endogenous LeT6 genes. The expression patterns of LeT6 argue in favor of a fundamental role for LeT6 in morphogenesis of leaves in tomato and also suggest that variability in homeobox gene expression may account for some of the diversity in leaf form seen in nature.
Resumo:
Both the bacterial RecA protein and the eukaryotic Rad51 protein form helical nucleoprotein filaments on DNA that catalyze strand transfer between two homologous DNA molecules. However, only the ATP-binding cores of these proteins have been conserved, and this same core is also found within helicases and the F1-ATPase. The C-terminal domain of the RecA protein forms lobes within the helical RecA filament. However, the Rad51 proteins do not have the C-terminal domain found in RecA, but have an N-terminal extension that is absent in the RecA protein. Both the RecA C-terminal domain and the Rad51 N-terminal domain bind DNA. We have used electron microscopy to show that the lobes of the yeast and human Rad51 filaments appear to be formed by N-terminal domains. These lobes are conformationally flexible in both RecA and Rad51. Within RecA filaments, the change between the “active” and “inactive” states appears to mainly involve a large movement of the C-terminal lobe. The N-terminal domain of Rad51 and the C-terminal domain of RecA may have arisen from convergent evolution to play similar roles in the filaments.
Resumo:
Pituitary cell types arise in a temporally and spatially specific fashion, in response to combinatorial actions of transcription factors induced by transient signaling gradients. The critical transcriptional determinants of the two pituitary cell types that express the pro-opiomelanocortin (POMC) gene, the anterior lobe corticotropes, producing adrenocorticotropin, and the intermediate lobe melanotropes, producing melanocyte-stimulating hormone (MSHα), have remained unknown. Here, we report that a member of the T-box gene family, Tbx19, which is expressed only in the rostral ventral diencephalon and pituitary gland, commencing on e11.5, marks pituitary cells that will subsequently express the POMC gene and is capable of altering progression of ventral cell types and inducing adrenocorticotropin in rostral tip cells. It is suggested that Tbx19, depending on the presence of synergizing transcription factors, can activate POMC gene expression and repress the α glycoprotein subunit and thyroid-stimulating hormone β promoters.
Resumo:
Evidence accumulated over more than 45 years has indicated that environmental stimuli can induce craving for drugs of abuse in individuals who have addictive disorders. However, the brain mechanisms that subserve such craving have not been elucidated. Here a positron emission tomographic study shows increased glucose metabolism in cortical and limbic regions implicated in several forms of memory when human volunteers who abuse cocaine are exposed to drug-related stimuli. Correlations of metabolic increases in the dorsolateral prefrontal cortex, medial temporal lobe (amygdala), and cerebellum with self-reports of craving suggest that a distributed neural network, which integrates emotional and cognitive aspects of memory, links environmental cues with cocaine craving.
Resumo:
The neural pathway that governs an escape response of Drosophila to sudden changes in light intensity can be artificially induced by electrical stimulation of the brain and monitored by electrical recording from the effector muscles. We have refined previous work in this system to permit reliable ascertainment of two kinds of response: (i) a short-latency response that follows from direct excitation of a giant fiber neuron in the interior of the fly brain and (ii) a long-latency response in which electrical stimulation triggers neurons in the optic ganglia that ultimately impinge on the giant fiber neuron. The general anesthetic halothane is reported here to have very different potencies in inhibiting these two responses. The long-latency response is obliterated at concentrations similar to those that cause gross behavioral effects in adult flies, whereas the short-latency response is only partially inhibited at doses that are 10-fold higher. Three other volatile anesthetic agents show a similar pattern. Thus, as in higher organisms, the Drosophila nervous system is differentiated into components of high and low sensitivity to general anesthetics. Moreover, this work shows that one of the sensitive components of the nervous system lies in the optic lobe and is readily assayed by its effect on downstream systems; it should provide a focus for exploring the effects of genetic alteration of anesthetic sensitivity.
Resumo:
We have isolated a new Drosophila mutant, satori (sat), the males of which do not court or copulate with female flies. The sat mutation comaps with fruitless (fru) at 91B and does not rescue the bisexual phenotype of fru, indicating that sat is allelic to fru (fru(sat)). The fru(sat) adult males lack a male-specific muscle, the muscle of Lawrence, as do adult males with other fru alleles. Molecular cloning and analyses of the genomic and complementary DNAs indicated that transcription of the fru locus yields several different transcripts. The sequence of fru cDNA clones revealed a long open reading frame that potentially encodes a putative transcription regulator with a BTB domain and two zinc finger motifs. In the 5' noncoding region, three putative transformer binding sites were identified in the female transcript but not in male transcripts. The fru gene is expressed in a population of brain cells, including those in the antennal lobe, that have been suggested to be involved in determination of male sexual orientation. We suggest that fru functions downstream of tra in the sex-determination cascade in some neural cells and that inappropriate sexual development of these cells in the fru mutants results in altered sexual orientation of the fly.
Resumo:
Regional cerebral blood flow was measured with positron-emission tomography during two encoding and two retrieval tasks that were designed to compare memory for object features with memory for object locations. Bilateral increases in regional cerebral blood flow were observed in both anterior and posterior regions of inferior temporal cortex and in ventral regions of prestriate cortex, when the condition that required retrieval of object locations was subtracted from the condition that required retrieval of object features. During encoding, these changes were less pronounced and were restricted to the left inferior temporal cortex and right ventral prestriate cortex. In contrast, both encoding and retrieval of object location were associated with bilateral changes in dorsal prestriate and posterior parietal cortex. Finally, the two encoding conditions activated left frontal lobe regions preferentially, whereas the two retrieval conditions activated right frontal lobe regions. These findings confirm that, in human subjects, memory for object features is mediated by a distributed system that includes ventral prestriate cortex and both anterior and posterior regions of the inferior temporal gyrus. In contrast, memory for the locations of objects appears to be mediated by an anatomically distinct system that includes more dorsal regions of prestriate cortex and posterior regions of the parietal lobe.
Resumo:
Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus.
Resumo:
Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory.
Resumo:
Two motor areas are known to exist in the medial frontal lobe of the cerebral cortex of primates, the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA). We report here on an aspect of cellular activity that characterizes the pre-SMA. Monkeys were trained to perform three different movements sequentially in a temporal order. The correct order was planned on the basis of visual information before its execution. A group of pre-SMA cells (n = 64, 25%) were active during a process when monkeys were required to discard a current motor plan and develop a plan appropriate for the next orderly movements. Such activity was not common in the SMA and not found in the primary motor cortex. Our data suggest a role of pre-SMA cells in updating motor plans for subsequent temporally ordered movements.
Resumo:
A difference in female pheromone production and male behavioral response has previously been found in two populations of the turnip moth, Agrotis segetum, originating from Sweden and Zimbabwe, respectively. In this study, we investigated the pheromone response of antennal lobe interneurons of males of the two populations by intracellular recordings, stimulating with single pheromone components and various inter- and intra-populational pheromone blends. Three major physiological types of antennal lobe neurons were established in the two populations according to their responses to different stimuli. One type responded broadly to almost all the stimuli tested. The second type responded selectively to some of the single components and blends. The third type did not respond to any single components but did respond to certain blends. Furthermore, some neurons of the second and third type recognized strain specific differences in ratios between pheromone components. Both projection neurons and local interneurons were found among these three types. Two pheromone responding bilateral projection neurons are reported for the first time in this paper.
Resumo:
Organelles in the axoplasm from the squid giant axon move along exogenous actin filaments toward their barbed ends. An approximately 235-kDa protein, the only band recognized by a pan-myosin antibody in Western blots of isolated axoplasmic organelles, has been previously proposed to be a motor for these movements. Here, we purify this approximately 235-kDa protein (p235) from axoplasm and demonstrate that it is a myosin, because it is recognized by a pan-myosin antibody and has an actin-activated Mg-ATPase activity per mg of protein 40-fold higher than that of axoplasm. By low-angle rotary shadowing, p235 differs from myosin II and it does not form bipolar filaments in low salt. The amino acid sequence of a 17-kDa protein that copurifies with p235 shows that it is a squid optic lobe calcium-binding protein, which is more similar by amino acid sequence to calmodulin (69% identity) than to the light chains of myosin II (33% identity). A polyclonal antibody to this light chain was raised by using a synthetic peptide representing the calcium binding domain least similar to calmodulin. We then cloned this light chain by reverse transcriptase-PCR and showed that this antibody recognizes the bacterially expressed protein but not brain calmodulin. In Western blots of sucrose gradient fractions, the 17-kDa protein is found in the organelle fraction, suggesting that it is a light chain of the p235 myosin that is also associated with organelles.