35 resultados para Aristarchus, of Samothrace, ca. 217-145 B.C.
Resumo:
We sought to examine mechanisms responsible for increased vasoconstriction that occurs during development of nitroglycerin tolerance. Rabbits were treated for 3 days with nitroglycerin patches (0.4 mg/hr), and their aortic segments were studied in organ chambers. This treatment resulted in attenuated in vitro relaxations to nitroglycerin and increased contractile sensitivity to angiotensin II, serotonin, phenylephrine, KCl, and a direct activator of protein kinase C, the phorbol ester phorbol 12,13-dibutyrate. The protein kinase C antagonists calphostin C (100 nM) and staurosporine (10 nM) corrected the hypersensitivity to constrictors in tolerant vessels, yet had minimal effects on constrictions in control vessels. Paradoxically, constrictions caused by endothelin 1 were decreased in nitrate-tolerant vessels. Immunocytochemical analysis revealed intense endothelin 1-like and big endothelin 1-like immunoreactivity in the media of nitroglycerin-tolerant but not of control aortas. The enhanced vasoconstriction to angiotensin II, serotonin, KCl, and phenylephrine could be mimicked in normal vessels by addition of subthreshold concentrations of endothelin 1, and this effect was prevented by calphostin C. We propose that increased autocrine production of endothelin 1 in nitrate tolerance sensitizes vascular smooth muscle to a variety of vasoconstrictors through a protein kinase C-mediated mechanism.
Resumo:
The B-cell receptor CD22 binds sialic acid linked alpha-2-6 to terminal galactose residues on N-linked oligosaccharides associated with several cell-surface glycoproteins. The first of these sialoglycoproteins to be identified was the receptor-linked phosphotyrosine phosphatase CD45, which is required for antigen/CD3-induced T-cell activation. In the present work, we examine the effect of interaction between the extracellular domain of CD45 and CD22 on T-cell activation. Using soluble CD22-immunoglobulin fusion proteins and T cells expressing wild-type and chimeric CD45 forms, we show that engagement of CD45 by soluble CD22 can modulate early T-cell signals in antigen receptor/CD3-mediated stimulation. We also show that addition of sialic acid by beta-galactoside alpha-2,6-sialyltransferase to the CD22 molecule abrogates interactions between CD22 and its ligands. Together, these observations provide direct evidence for a functional role of the interaction between the extracellular domain of CD45 and a natural ligand and suggest another regulatory mechanism for CD22-mediated ligand engagement.
Resumo:
TNF-induced activation of the transcription factor NF-κB and the c-jun N-terminal kinase (JNK/SAPK) requires TNF receptor-associated factor 2 (TRAF2). The NF-κB-inducing kinase (NIK) associates with TRAF2 and mediates TNF activation of NF-κB. Herein we show that NIK interacts with additional members of the TRAF family and that this interaction requires the conserved “WKI” motif within the TRAF domain. We also investigated the role of NIK in JNK activation by TNF. Whereas overexpression of NIK potently induced NF-κB activation, it failed to stimulate JNK activation. A kinase-inactive mutant of NIK was a dominant negative inhibitor of NF-κB activation but did not suppress TNF- or TRAF2-induced JNK activation. Thus, TRAF2 is the bifurcation point of two kinase cascades leading to activation of NF-κB and JNK, respectively.
Resumo:
Group B streptococci (GBS) are the most common cause of neonatal sepsis, pneumonia, and meningitis. The alpha C protein is a surface-associated antigen; the gene (bca) for this protein contains a series of tandem repeats (each encoding 82 aa) that are identical at the nucleotide level and express a protective epitope. We previously reported that GBS isolates from two of 14 human maternal and neonatal pairs differed in the number of repeats contained in their alpha C protein; in both pairs, the alpha C protein of the neonatal isolate was smaller in molecular size. We now demonstrate by PCR that the neonatal isolates contain fewer tandem repeats. Maternal isolates were susceptible to opsonophagocytic killing in the presence of alpha C protein-specific antiserum, whereas the discrepant neonatal isolates proliferated. An animal model was developed to further study this phenomenon. Adult mice passively immunized with antiserum to the alpha C protein were challenged with an alpha C protein-expressing strain of GBS. Splenic isolates of GBS from these mice showed a high frequency of mutation in bca--most commonly a decrease in repeat number. Isolates from non-immune mice were not altered. Spontaneous deletions in the repeat region were observed at a much lower frequency (6 x 10(-4)); thus, deletions in that region are selected for under specific antibody pressure and appear to lower the organism's susceptibility to killing by antibody specific to the alpha C protein. This mechanism of antigenic variation may provide a means whereby GBS evade host immunity.
Resumo:
Cytokines are important regulators of hematopoesis. Mutations in gamma c, which is a subunit shared by the receptors for interleukin (IL) 2, IL-4, and IL-7, have been causally associated with human X chromosome-linked severe combined immunodeficiency disease. This finding indicates a mandatory role for cytokine receptor signaling at one or more stages of lymphocyte development. To evaluate the cellular level at which gamma c is critical for lymphopoiesis, the effect of monoclonal antibodies to gamma c on the capacity of syngeneic bone marrow cells to reconstitute the hematopoietic compartment of lethally irradiated recipient mice was examined. We show that monoclonal antibody to gamma c blocked lymphocyte development at or before the appearance of pro-B cells and prior to or at the seeding of the thymus by precursor cells while erythromyeloid cell development was normal. These results suggest that one level of lymphocyte development that requires gamma c is a point in hematopoietic cell differentiation near the divergence of lymphopoiesis and erythromyelopoesis.