77 resultados para Amino acids in nutrition
Resumo:
We have carried out conformational energy calculations on alanine-based copolymers with the sequence Ac-AAAAAXAAAA-NH2 in water, where X stands for lysine or glutamine, to identify the underlying source of stability of alanine-based polypeptides containing charged or highly soluble polar residues in the absence of charge–charge interactions. The results indicate that ionizable or neutral polar residues introduced into the sequence to make them soluble sequester the water away from the CO and NH groups of the backbone, thereby enabling them to form internal hydrogen bonds. This solvation effect dictates the conformational preference and, hence, modifies the conformational propensity of alanine residues. Even though we carried out simulations for specific amino acid sequences, our results provide an understanding of some of the basic principles that govern the process of folding of these short sequences independently of the kind of residues introduced to make them soluble. In addition, we have investigated through simulations the effect of the bulk dielectric constant on the conformational preferences of these peptides. Extensive conformational Monte Carlo searches on terminally blocked 10-mer and 16-mer homopolymers of alanine in the absence of salt were carried out assuming values for the dielectric constant of the solvent ɛ of 80, 40, and 2. Our simulations show a clear tendency of these oligopeptides to augment the α-helix content as the bulk dielectric constant of the solvent is lowered. This behavior is due mainly to a loss of exposure of the CO and NH groups to the aqueous solvent. Experimental evidence indicates that the helical propensity of the amino acids in water shows a dramatic increase on addition of certain alcohols, such us trifluoroethanol. Our results provide a possible explanation of the mechanism by which alcohol/water mixtures affect the free energy of helical alanine oligopeptides relative to nonhelical ones.
Resumo:
Guanylyl cyclases (GCs) and adenylyl cyclases (ACs) have fundamental roles in a wide range of cellular processes. Whereas GCs use GTP as a substrate to form cGMP, ACs catalyze the analogous conversion of ATP to cAMP. Previously, a model based on the structure of adenylate cyclase was used to predict the structure of the nucleotide-binding pocket of a membrane guanylyl cyclase, RetGC-1. Based on this model, we replaced specific amino acids in the guanine-binding pocket of GC with their counterparts from AC. A change of two amino acids, E925K together with C995D, is sufficient to completely alter the nucleotide specificity from GTP to ATP. These experiments strongly validate the AC-derived RetGC-1 structural model and functionally confirm the role of these residues in nucleotide discrimination.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
Biosynthesis of aromatic amino acids in plants, many bacteria, and microbes relies on the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, a prime target for drugs and herbicides. We have identified the interaction of EPSP synthase with one of its two substrates (shikimate 3-phosphate) and with the widely used herbicide glyphosate by x-ray crystallography. The two-domain enzyme closes on ligand binding, thereby forming the active site in the interdomain cleft. Glyphosate appears to occupy the binding site of the second substrate of EPSP synthase (phosphoenol pyruvate), mimicking an intermediate state of the ternary enzyme⋅substrates complex. The elucidation of the active site of EPSP synthase and especially of the binding pattern of glyphosate provides a valuable roadmap for engineering new herbicides and herbicide-resistant crops, as well as new antibiotic and antiparasitic drugs.
Resumo:
Although long suspected from histochemical evidence for carbonic anhydrase (CA) activity on neurons and observations that CA inhibitors enhance the extracellular alkaline shifts associated with synaptic transmission, an extracellular CA in brain had not been identified. A candidate for this CA was suggested by the recent discovery of membrane CA (CA XIV) whose mRNA is expressed in mouse and human brain and in several other tissues. For immunolocalization of CA XIV in mouse and human brain, we developed two antibodies, one against a secretory form of enzymatically active recombinant mouse CA XIV, and one against a synthetic peptide corresponding to the 24 C-terminal amino acids in the human enzyme. Immunostaining for CA XIV was found on neuronal membranes and axons in both mouse and human brain. The highest expression was seen on large neuronal bodies and axons in the anterolateral part of pons and medulla oblongata. Other CA XIV-positive sites included the hippocampus, corpus callosum, cerebellar white matter and peduncles, pyramidal tract, and choroid plexus. Mouse brain also showed a positive reaction in the molecular layer of the cerebral cortex and granular cellular layer of the cerebellum. These observations make CA XIV a likely candidate for the extracellular CA postulated to have an important role in modulating excitatory synaptic transmission in brain.
Resumo:
p300 and CBP participate as transcriptional coregulators in the execution of a wide spectrum of cellular gene expression programs controlling cell differentiation, growth and homeostasis. Both proteins act together with sequence-specific transcription factors to modify chromatin structure of target genes via their intrinsic acetyltransferase activity directed towards core histones and some transcription factors. So far, p300-related proteins have been described in animals ranging from Drosophila and Caenorhabditis elegans to humans. In this report, we describe p300/CBP-like polypeptides in the plant Arabidopsis thaliana. Interestingly, homology between animal and plant p300/CBP is largely restricted to a C-terminal segment, about 600 amino acids in length, which encompasses acetyltransferase and E1A-binding domains. We have examined whether this conservation in sequence is paralleled by a conservation in function. The same amino acid residues critical for acetyltransferase activity in human p300 are also critical for the function of one of the plant orthologs. Remarkably, plant proteins bind to the adenovirus E1A protein in a manner recapitulating the binding specificity of mammalian p300/CBP. The striking conservation of an extended segment of p300/CBP suggests that it may constitute a functional entity fulfilling functions that may be essential for all metazoan organisms.
Resumo:
Arginase (EC 3.5.3.1) transcript level and activity were measured in soybean (Glycine max L.) embryos from the reserve deposition stage to postgermination. Using a cDNA probe for a small soybean arginase gene family, no transcript was detected in developing embryos. However, arginase transcripts increased sharply on germination, reaching a maximum at 3 to 5 d after germination. There was low but measurable in vitro arginase specific activity in developing embryos (less than 6% of seedling maximum). During germination arginase specific activity increased in parallel with the sharply increasing arginase transcript level. Seedling arginase activity was largely localized in cotyledons. Arginase activity was assayed in vivo by measuring urea accumulation in a urease-deficient mutant. No urea was detected in developing embryos, whereas accumulated urea paralleled arginase specific activity and transcript level in germinating seedlings. As in planta embryos, cultured cotyledons did not accumulate urea when arginine (Arg) was provided with other amino acids in a “mock” seed-coat exudate. Arg as the sole nitrogen source was converted to urea but did not support cotyledon growth. There appeared to be a lack of recruitment of the low-level arginase activity to hydrolyze free Arg in developing embryos, thus avoiding a futile urea cycle.
Resumo:
Escherichia coli RTEM beta-lactamase reversibly forms a stable complex with GroEL, devoid of any enzymatic activity, at 48 degrees C. When beta-lactamase is diluted from this complex into denaturant solution, its unfolding rate is identical to that from the native state, while the unfolding rate from the molten globule state is too fast to be measured. Electrospray mass spectrometry shows that the rate of proton exchange in beta-lactamase in the complex at 48 degrees C is slower than in the absence of GroEL at the same temperature, and resembles the exchange of the native state at 25 degrees C. Similarly, the final number of protected deuterons is higher in the presence of GroEL than in its absence. We conclude that, for beta-lactamase, a state with significant native structure is bound to GroEL. Thus, different proteins are recognized by GroEL in very different states, ranging from totally unfolded to native-like, and this recognition may depend on which state can provide sufficient accessible hydrophobic amino acids in a suitably clustered arrangement. Reversible binding of native-like states with hydrophobic patches may be an important property of GroEL to protect the cell from aggregating protein after heat-shock.
Resumo:
The coupling of agonist-activated seven transmembrane domain receptors to G proteins is known to involve the amino-terminal region of their third cytoplasmic loop. Analysis of the amino acids in this region of the rat type in angiotensin (AT1a) receptor identified Leu-222 as an essential residue in receptor activation by the physiological agonist, angiotensin II (Ang II). Nonpolar replacements for Leu-222 yielded functionally intact AT1 receptors, while polar or charged residues caused progressive impairment of Ang II-induced inositol phosphate generation. The decrease in agonist-induced signal generation was associated with a parallel reduction of receptor internalization, and was most pronounced for the Lys-222 mutant receptor. Although this mutant showed normal binding of the peptide antagonist, [Sar1,Ile6]Ang II, its affinity for Ang II was markedly reduced, consistent with its inability to adopt the high-affinity conformation. A search revealed that many Gq-coupled receptors contain an apolar amino acid (frequently leucine) in the position corresponding to Leu-222 of the AT1 receptor. These findings suggest that such a conserved apolar residue in the third intracellular loop is a crucial element in the agonist-induced activation of the AT1 and possibly many other G protein-coupled receptors.
Resumo:
KAT1 is a voltage-dependent inward rectifying K+ channel cloned from the higher plant Arabidopsis thaliana [Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. (1992) Proc. Natl. Acad. Sci. USA 89, 3736-3740]. It is related to the Shaker superfamily of K+ channels characterized by six transmembrane spanning domains (S1-S6) and a putative pore-forming region between S5 and S6 (H5). The 115 region between Pro-247 and Pro-271 in KAT1 contains 14 additional amino acids when compared with Shaker [Aldrich, R. W. (1993) Nature (London) 362, 107-108]. We studied various point mutations introduced into H5 to determine whether voltage-dependent plant and animal K+ channels share similar pore structures. Through heterologous expression in Xenopus oocytes and voltage-clamp analysis combined with phenotypic analysis involving a potassium transport-defective Saccharomyces cerevisiae strain, we investigated the selectivity filter of the mutants and their susceptibility toward inhibition by cesium and calcium ions. With respect to electrophysiological properties, KAT1 mutants segregated into three groups: (i) wild-type-like channels, (ii) channels modified in selectivity and Cs+ or Ca2+ sensitivity, and (iii) a group that was additionally affected in its voltage dependence. Despite the additional 14 amino acids in H5, this motif in KAT1 is also involved in the formation of the ion-conducting pore because amino acid substitutions at Leu-251, Thr-256, Thr-259, and Thr-260 resulted in functional channels with modified ionic selectivity and inhibition. Creation of Ca2+ sensitivity and an increased susceptibility to Cs+ block through mutations within the narrow pore might indicate that both blockers move deeply into the channel. Furthermore, mutations close to the rim of the pore affecting the half-activation potential (U1/2) indicate that amino acids within the pore either interact with the voltage sensor or ion permeation feeds back on gating.
Resumo:
Benzodiazepine (BZA)-5B, a CAAX farnesyl-transferase inhibitor, was previously shown to block the farnesylation of H-Ras and to reverse the transformed morphology of Rat1 cells expressing oncogenic H-RasV12. Non-transformed Rat1 cells were not affected by BZA-5B, suggesting that they produce a form of Ras whose prenylation is not blocked by this compound. The likely candidate is K-RasB, which differs from H-Ras primarily in the terminal 24 amino acids. In the current study we examined the effect of BZA-5B on the prenylation of a chimeric oncogenic Ras protein designated H/K-RasBV12, consisting of the first 164 amino acids of H-RasV12 followed by the last 24 amino acids of K-RasB. BZA-5B failed to block the prenylation of this chimera and was thus unable to reverse the transformed morphology of Rat1 cells in which it was expressed. Another potent inhibitor of H-Ras farnesylation, L-739,749, also failed to block prenylation of H/K-RasBV12. Similar results were obtained in transfected cells expressing a widely used version of K-RasBV12 containing a 10-amino acid extension at its NH2 terminus. Neither BZA-5B nor L-739,749 reversed the transformed morphology of cells expressing H/K-RasBV12. The resistance of K-RasB to farnesyltransferase inhibition provides a likely explanation for the resistance of nontransformed cells to the growth inhibitory effects of BZA-5B and L-739,749.
Resumo:
A transcription interference assay was used to generate mutant basic region-leucine zipper proteins with altered DNA-binding specificities. A library of mutants of a CCAAT/enhancer binding protein was constructed by randomizing five DNA-contacting amino acids in the basic region Asn-18, Ala-15, Val-14, Ser-11, and Arg-10. These mutants were then selected for their ability to bind mutant recognition sequences containing substitutions at the 2 and 3 positions of the wild-type sequence 5'-A5T4T3G2C1G1'C2'A3A4'T5'-3'. Mutants containing the sequence Leu-18Tyr-15Xaa-14Tyr-11Arg-10, in which four of the five contact residues are altered, were identified that recognize the palindromic sequence 5'-ATCYCGY'GAT-3' (Xaa = asparagine when Y = G; Xaa = methionine when Y = A). Moreover, in a selection against the sequence 5'-ATTACGTAAT-3', mutants were obtained containing substitutions not only in the basic region but also in the hinge region between the basic and leucine zipper regions. The mutant proteins showed high specificity in a functional transcription interference assay. A model for the interaction of these mutants with the target DNA sequences is discussed.
Resumo:
The effect of temperature from 5 degrees C to 50 degrees C on the retention of dansyl derivatives of amino acids in hydrophobic interaction chromatography (HIC) was investigated by HPLC on three stationary phases. Plots of the logarithmic retention factor against the reciprocal temperature in a wide range were nonlinear, indicative of a large negative heat capacity change associated with retention. By using Kirchoff's relations, the enthalpy, entropy, and heat capacity changes were evaluated from the logarithmic retention factor at various temperatures by fitting the data to a logarithmic equation and a quadratic equation that are based on the invariance and on an inverse square dependence of the heat capacity on temperature, respectively. In the experimental temperature interval, the heat capacity change was found to increase with temperature and could be approximated by the arithmetic average. For HIC retention of a set of dansylamino acids, both enthalpy and entropy changes were positive at low temperatures but negative at high temperatures as described in the literature for other processes based on the hydrophobic effect. The approach presented here shows that chromatographic measurements can be not only a useful adjunct to calorimetry but also an alternative means for the evaluation of thermodynamic parameters.
Resumo:
Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.