87 resultados para Alpha-synuclein Gene
Resumo:
The open reading frame P (ORF P) is located in the domain and on the DNA strand of the herpes simplex virus 1 transcribed during latent infection. ORF P is not expressed in productively infected cells as a consequence of repression by the binding of the major viral regulatory protein to its high-affinity binding site. In cells infected with a mutant virus carrying a derepressed gene, ORF P protein is extensively posttranslationally processed. We report that ORF P interacts with a component of the splicing factor SF2/ASF, pulls down a component of the SM antigens, and colocalizes with splicing factors in nuclei of infected cells. The hypothesis that ORF P protein may act to regulate viral gene expression, particularly in situations such as latently infected sensory neurons in which the major regulatory protein is not expressed, is supported by the evidence that in cells infected with a mutant in which the ORF P gene was derepressed, the products of the regulatory genes alpha 0 and alpha 22 are reduced in amounts early in infection but recover late in infection. The proteins encoded by these genes are made from spliced mRNAs, and the extent of recovery of these proteins late in infection correlates with the extent of accumulation of post-translationally processed forms of ORF P protein.
Resumo:
The RXR gamma (RXR, retinoid X receptor) gene was disrupted in the mouse. Homozygous mutant mice developed normally and were indistinguishable from their RXR gamma +/- or wild-type littermates with respect to growth, fertility, viability, and apparent behavior in the animal facility. Moreover, RXR alpha -/-/RXR gamma -/- and RXR beta -/-/RXR gamma -/- mutant phenotypes were indistinguishable from those of RXR alpha -/- and RXR beta -/- mutants, respectively. Strikingly, RXR alpha +/-/RXR beta -/-/RXR gamma -/- triple mutants were viable. Thus, it appears that RXR gamma does not exert any essential function that cannot be performed by RXR alpha or RXR beta, and one copy of RXR alpha is sufficient to perform most of the functions of the RXRs.
Resumo:
Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.
Resumo:
Type I (alpha, beta) and type II (gamma) interferons (IFNs) can restrict the growth of many cell types. INF-stimulated gene transcription, a key early event in IFN response, acts through the Janus kinase-signal transducers and activators of transcription pathway, in which both IFN-alpha and IFN-gamma activate the transcription factor Stat1. A cell line lacking Stat1 (U3A) was not growth-arrested by IFN-alpha or IFN-gamma, and experiments were carried out with U3A cells permanently expressing normal or various mutant forms of Stat1 protein. Only cells in which complete Stat1 activity was available (Stat1alpha) were growth-inhibited by IFN-gamma. A mutant that supports 20-30% normal transcription did not cause growth restraint. In contrast, IFN-alpha growth restraint was imposed by cells producing Stat1beta, which lacks transcriptional activation potential. This parallels earlier results showing the truncated Stat1 can function in IFN-alpha gene activation. In addition to experiments on long-term cultured cells, we also found that wild-type primary mouse embryonic fibroblasts were inhibited by IFNs, but fibroblasts from Stat1-deficient mouse embryos were not inhibited by IFNs.
Resumo:
Fabry disease is an X-linked metabolic disorder due to a deficiency of alpha-galactosidase A (alpha-gal A; EC 3.2.1.22). Patients accumulate glycosphingolipids with terminal alpha-galactosyl residues that come from intracellular synthesis, circulating metabolites, or from the biodegradation Of senescent cells. Patients eventually succumb to renal, cardio-, or cerebrovascular disease. No specific therapy exists. One possible approach to ameliorating this disorder is to target corrective gene transfer therapy to circulating hematopoietic cells. Toward this end, an amphotropic virus-producer cell line has been developed that produces a high titer (>10(6) i.p. per ml) recombinant retrovirus constructed to transduce and correct target cells. Virus-producer cells also demonstrate expression of large amounts of both intracellular and secreted alpha-gal A. To examine the utility of this therapeutic vector, skin fibroblasts from Fabry patients were corrected for the metabolic defect by infection with this recombinant virus and secreted enzyme was observed. Furthermore, the secreted enzyme was found to be taken up by uncorrected cells in a mannose-6-phosphate receptor-dependent manner. In related experiments, immortalized B cell lines from Fabry patients, created as a hematologic delivery test system, were transduced. As with the fibroblasts, transduced patient B cell lines demonstrated both endogenous enzyme correction and a small amount of secretion together with uptake by uncorrected cells. These studies demonstrate that endogenous metabolic correction in transduced cells, combined with secretion, may provide a continuous source of corrective material in trans to unmodified patient bystander cells (metabolic cooperativity).
Resumo:
Persistent infection of the chestnut blight fungus Cryphonectria parasitica with the prototypic hypovirus CHVI-713 results in attenuation of fungal virulence (hypo-virulence) and reduced accumulation of the GTP-binding (G) protein a subunit CPG-1. Transgenic cosuppression of CPG-1 accumulation in the absence of virus infection also confers hypovirulence. We now report the use of mRNA differential display to examine the extent to which virus infection alters fungal gene transcript accumulation and to assess the degree to which modification of CPG-1 signal transduction contributes to this alteration. More than 400 PCR products were identified that either increased (296 products) or decreased (127 products) in abundance as a result of virus infection. Significantly, 65% of these products exhibited similar changes as a result of CPG-1 cosuppression in the absence of virus infection. We also report that both virus infection and CPG-1 cosuppression elevate cAMP levels 3- to 5-fold. Additionally, it was possible to mimic the effect of virus infection and CPG-1 cosuppression on transcript accumulation for representative fungal genes by drug-induced elevation of cAMP levels. These results strengthen and extend previous indications that hypovirus infection causes a significant and persistent alteration of fungal gene expression/transcript accumulation. They further show that this alteration is primarily mediated through modification of the CPG-1 signaling pathway and suggest that, similar to mammalian Gi alpha subunits, CPG-1 functions as a negative modulator of adenylyl cyclase. Finally, these results suggest a role for G-protein-regulated cAMP accumulation in hypovirus-mediated alteration of fungal gene expression.
Resumo:
The hypothesis that morphological evolution may largely result from changes in gene regulation rather than gene structure has been difficult to test. Morphological differences among insects are often apparent in the cuticle structures produced. The dopa decarboxylase (Ddc) and alpha-methyldopa hypersensitive (amd) genes arose from an ancient gene duplication. In Drosophila, they have evolved nonoverlapping functions, including the production of distinct types of cuticle, and for Ddc, the production of the neurotransmitters, dopamine and serotonin. The amd gene is particularly active in the production of specialized flexible cuticles in the developing embryo. We have compared the pattern of amd expression in three Drosophila species. Several regions of expression conserved in all three species but, surprisingly, a unique domain of expression is found in Drosophila simulans that does occur in the closely related (2-5 million years) Drosophila melanogaster or in the more remote (40-50 million years) Drosophila virilis. The "sudden" appearance of a completely new and robust domain of expression provides a glimpse of evolutionary variation resulting from changes in regulation of structural gene expression.
Resumo:
Transgenic mice carrying a bovine alpha-lactalbumin (alpha-lac) specific ribozyme gene under the transcriptional control of the mouse mammary tumor virus long terminal repeat were generated and cross-bred with animals that highly express a bovine alpha-lac transgene (0.4 mg of alpha-lac/ml(-1) of milk). The ribozyme contains the hammerhead catalytic domain, flanked by 12-nt sequences complementary to the 3' untranslated region of bovine alpha-lac transcript. High-level expression of the ribozyme gene was detected by Northern blot analysis in the mammary gland of 7-8 day lactating transgenic mice, from 3 of 12 lines analyzed. Heterozygous expression of the ribozyme resulted in a reduction in the levels of the target mRNA to 78, 58, and 50% of that observed in the nonribozyme transgenic littermate controls for three independent lines. The ribozyme-mediated reduction in the levels of the bovine protein paralleled that observed for the mRNA, and was positively correlated with the level of expression of the ribozyme. In nonribozyme expressing transgenic mice, the level of bovine alpha-lac mRNA and protein was not affected. The specificity of this activity is demonstrated by the absence of a reduction in the levels of the endogenous murine alpha-lac mRNA or protein. These results demonstrate the feasibility of ribozyme-mediated down-regulation of highly-expressed transcripts in transgenic animals.
Resumo:
By using RAR type (alpha, beta, or gamma)-specific synthetic retinoids and a pan-retinoic X receptor (RXR)-specific ligand, we have investigated the contribution of RARs and RXRs in the activation of RA target genes and the differentiation of embryonal carcinoma cells. We demonstrate cell-type- and promoter context-dependent functional redundancies that differ between the three RAR types for mediating the induction of RARbeta2 and Hoxa-1 in wild-type, RARgamma-/- and RARalpha-/- F9 cells and in P19 cells. The extent of redundancy between RARs is further modulated by the synergistic activation of RXRs with a pan-RXR agonist. We also demonstrate that the expression of RARbeta2 is auto-inducible in RARgamma-/- but not in wild-type F9 cells, indicating that the functional redundancies observed between RARs in gene disruption studies can be artefactually generated. Thus, even though all three RARs can functionally substitute each other for inducing the expression of RA target genes and cell differentiation, one RAR can cell-specifically override the activity of the other RARs. Interestingly, only RARgamma can mediate the retinoic acid-induced differentiation of wild-type F9 cells, whereas the differentiation of P19 cells can be mediated by either RARalpha or RARgamma.
Resumo:
To analyze the role of alpha4-integrins in lymphoma metastasis, sublines of the T-cell lymphoma LB were generated by retrovirus-mediated gene transfer that differ exclusively in the expression of alpha4-integrins. Using LB-alpha4 and control LB-NTK cells, we demonstrate that expression of alpha4-integrins strongly suppresses metastasis formation of LB lymphoma cells in secondary lymphoid organs such as spleen, mesenteric and peripheral lymph nodes, or Peyer's patches after i.v. injection into syngeneic BALB/c mice. Moreover, alpha4-integrin expression inhibited development of metastatic tumors in liver, lung, and kidney. Expansion of LB lymphoma cells in bone marrow was not affected by alpha4-integrin expression. In vivo migration assays using 51Cr-labeled lymphoma cells demonstrated that low-metastatic LB-alpha4 cells accumulated with the same efficiency as high-metastatic LB-NTK cells in all target organs examined and were even enriched in mucosal lymphoid organs. Collectively, these results indicate that alpha4-integrins inhibit metastasis formation of lymphoma cells at a stage subsequent to the invasion of target organs.
Resumo:
Primer extension and RACE (rapid amplification of cDNA ends) assays were used to identify and sequence the 5' terminus of mouse ob mRNA. This sequence was used to obtain a recombinant bacteriophage containing the first exon of the encoding gene. DNA sequence analysis of the region immediately upstream of the first exon of the mouse ob gene revealed DNA sequences corresponding to presumptive cis-regulatory elements. A canonical TATA box was observed 30-34 base pairs upstream from the start site of transcription and a putative binding site for members of the C/EBP family of transcription factors was identified immediately upstream from the TATA box. Nuclear extracts prepared from primary adipocytes contained a DNA binding activity capable of avid and specific interaction with the putative C/EBP response element; antibodies to C/EBP alpha neutralized the DNA binding activity present in adipocyte nuclear extracts. When linked to a firefly luciferase reporter and transfected into primary adipocytes, the presumptive promoter of the mouse ob gene facilitated luciferase expression. When transfected into HepG2 cells, which lack C/EBP alpha, the mouse ob promoter was only weakly active. Supplementation of C/EBP alpha by cotransfection with a C/EBP alpha expression vector markedly stimulated luciferase expression. Finally, an ob promoter variant mutated at the C/EBP response element was inactive in both primary adipocytes and HepG2 cells. These observations provide evidence for identification of a functional promoter capable of directing expression of the mouse ob gene.
Resumo:
Group B streptococci (GBS) are the most common cause of neonatal sepsis, pneumonia, and meningitis. The alpha C protein is a surface-associated antigen; the gene (bca) for this protein contains a series of tandem repeats (each encoding 82 aa) that are identical at the nucleotide level and express a protective epitope. We previously reported that GBS isolates from two of 14 human maternal and neonatal pairs differed in the number of repeats contained in their alpha C protein; in both pairs, the alpha C protein of the neonatal isolate was smaller in molecular size. We now demonstrate by PCR that the neonatal isolates contain fewer tandem repeats. Maternal isolates were susceptible to opsonophagocytic killing in the presence of alpha C protein-specific antiserum, whereas the discrepant neonatal isolates proliferated. An animal model was developed to further study this phenomenon. Adult mice passively immunized with antiserum to the alpha C protein were challenged with an alpha C protein-expressing strain of GBS. Splenic isolates of GBS from these mice showed a high frequency of mutation in bca--most commonly a decrease in repeat number. Isolates from non-immune mice were not altered. Spontaneous deletions in the repeat region were observed at a much lower frequency (6 x 10(-4)); thus, deletions in that region are selected for under specific antibody pressure and appear to lower the organism's susceptibility to killing by antibody specific to the alpha C protein. This mechanism of antigenic variation may provide a means whereby GBS evade host immunity.
Resumo:
The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 approximately 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).
Resumo:
The histone gene family in mammals consists of 15-20 genes for each class of nucleosomal histone protein. These genes are classified as either replication-dependent or -independent in regard to their expression in the cell cycle. The expression of the replication-dependent histone genes increases dramatically as the cell prepares to enter S phase. Using mouse histone genes, we previously identified a coding region activating sequence (CRAS) involved in the upregulation of at least two (H2a and H3) and possibly all nucleosomal replication-dependent histone genes. Mutation of two seven-nucleotide elements, alpha and omega, within the H3 CRAS causes a decrease in expression in stably transfected Chinese hamster ovary cells comparable with the effect seen upon deletion of the entire CRAS. Further, nuclear proteins interact in a highly specific manner with nucleotides within these sequences. Mutation of these elements abolishes DNA/protein interactions in vitro. Here we report that the interactions of nuclear factors with these elements are differentially regulated in the cell cycle and that protein interactions with these elements are dependent on the phosphorylation/dephosphorylation state of the nuclear factors.
Resumo:
We have cloned the gene for a putative chloroplast RNA polymerase sigma factor from the unicellular rhodophyte Cyanidium caldarium. This gene contains an open reading frame encoding a protein of 609 amino acids with domains highly homologous to all four conserved regions found in bacterial and cyanobacterial sigma 70-type subunits. When Southern blots of genomic DNA were hybridized to the "rpoD box" oligonucleotide probe, up to six hybridizing hands were observed. Transcripts of the sigma factor gene were undetectable in RNA from dark-grown cells but were abundant in the poly(A)+ fraction of RNA from illuminated cells. The sigma factor gene was expressed in Escherichia coli, and antibodies against the expressed sigma factor fusion protein cross-reacted with a 55-kDa protein in partially purified chloroplast RNA polymerase. Antibodies directed against a cyanobacterial RNA polymerase sigma factor also cross-reacted with a 55-kDa protein in the same enzyme preparation. Immunoprecipitation experiments showed that this enzyme preparation contains proteins with the same molecular weights as the alpha, beta, beta', and beta" subunits of chloroplast RNA polymerase in higher plants. This study identifies a gene for a plastid RNA polymerase sigma factor and indicates that there may be a family of nuclear-encoded sigma factors that recognize promoters in subsets of plastid genes and regulate differential gene expression at the transcriptional level.