62 resultados para Allophycocyanin beta subunit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The (3;21)(q26;q22) translocation associated with treatment-related myelodysplastic syndrome, treatment-related acute myeloid leukemia, and blast crisis of chronic myeloid leukemia results in the expression of the chimeric genes AML1/EAP, AML1/MDS1, and AML1/EVI1. AML1 (CBFA2), which codes for the alpha subunit of the heterodimeric transcription factor CBF, is also involved in the t(8;21), and the gene coding for the beta subunit (CBFB) is involved in the inv(16). These are two of the most common recurring chromosomal rearrangements in acute myeloid leukemia. CBF corresponds to the murine Pebp2 factor, and CBF binding sites are found in a number of eukaryotic and viral enhancers and promoters. We studied the effects of AML1/EAP and AML1/MDS1 at the AML1 binding site of the CSF1R (macrophage-colony-stimulating factor receptor gene) promoter by using reporter gene assays, and we analyzed the consequences of the expression of both chimeric proteins in an embryonic rat fibroblast cell line (Rat1A) in culture and after injection into athymic nude mice. Unlike AML1, which is an activator of the CSF1R promoter, the chimeric proteins did not transactivate the CSF1R promoter site but acted as inhibitors of AML1 (CBFA2). AML1/EAP and AML1/MDS1 expressed in adherent Rat1A cells decreased contact inhibition of growth, and expression of AML1/MDS1 was associated with acquisition of the ability to grow in suspension culture. Expression of AML1/MDS1 increased the tumorigenicity of Rat1A cells injected into athymic nude mice, whereas AML1/EAP expression prevented tumor growth. These results suggest that expression of AML1/EAP and AML1/MDS1 can interfere with normal AML1 function, and that AML1/MDS1 has tumor-promoting properties in an embryonic rat fibroblast cell line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central gamma subunit relative to the three catalytic beta subunits in soluble F1 from Escherichia coli. In the bovine F1 structure, a specific point of contact between the gamma subunit and one of the three catalytic beta subunits includes positioning of the homolog of E. coli gamma-subunit C87 (gamma C87) close to the beta-subunit 380DELSEED386 sequence. A beta D380C mutation allowed us to induce formation of a specific disulfide bond between beta and gamma C87 in soluble E. coli F1. Formation of the crosslink inactivated beta D380C-F1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked beta D380C-F1, we incorporated radiolabeled beta subunits into the two noncrosslinked beta-subunit positions of F1. After reduction of the initial nonradioactive beta-gamma crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled beta subunits with gamma C87 upon reoxidation. The results demonstrate that gamma subunit rotates relative to the beta subunits during catalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypertension is a common trait of multifactorial determination imparting an increased risk of myocardial infarction, stroke, and end-stage renal disease. The primary determinants of hypertension, as well as the factors which determine specific morbid sequelae, remain unknown in the vast majority of subjects. Knowledge that a large fraction of the interindividual variation in this trait is genetically determined motivates the application of genetic approaches to the identification of these primary determinants. Success in this effort will afford insights into pathophysiology, permit preclinical identification of subjects with specific inherited susceptibility, and provide opportunities to tailor therapy to specific underlying abnormalities. To date, mutations in three genes have been implicated in the pathogenesis of human hypertension: mutations resulting in ectopic expression of aldosterone synthase enzymatic activity cause a mendelian form of hypertension known as glucocorticoid-remediable aldosteronism; mutations in the beta subunit of the amiloride-sensitive epithelial sodium channel cause constitutive activation of this channel and the mendelian form of hypertension known as Liddle syndrome; finally, common variants at the angiotensinogen locus have been implicated in the pathogenesis of essential hypertension in Caucasian subjects, although the nature of the functional variants and their mechanism of action remain uncertain. These early findings demonstrate the feasibility and utility of the application of genetic analysis to dissection of this trait.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of human embryonal carcinoma cells. R278.5 cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers but differentiate or die in the absence of fibroblasts, despite the presence of recombinant human leukemia inhibitory factor. R278.5 cells allowed to differentiate in vitro secrete bioactive chorionic gonadotropin into the medium, express chorionic gonadotropin alpha- and beta-subunit mRNAs, and express alpha-fetoprotein mRNA, indicating trophoblast and endoderm differentiation. When injected into severe combined immunodeficient mice, R278.5 cells consistently differentiate into derivatives of all three embryonic germ layers. These results define R278.5 cells as an embryonic stem cell line, to our knowledge, the first to be derived from any primate species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the full-length (72 kDa) myotonin protein kinase (Mt-PK) and demonstrate its kinase activity. The 72-kDa protein corresponds to the translation product from the first in-frame AUG codon. This protein was found in the cytoplasmic fraction, whereas the previously reported 55-kDa protein was observed in nuclear extracts. Only the 72-kDa protein was phosphorylated by [32P]phosphate in normal human fibroblasts. To investigate the putative kinase activity of Mt-PK, a construct containing the full-length open reading frame of Mt-PK was expressed in bacterial cells. The recombinant Mt-PK autophosphorylates a Ser residue and phosphorylates the synthetic peptide Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg, which contains a Ser residue in the phosphorylation site. We examined phosphorylation of the voltage-dependent Ca(2+)-release channel, or dihydropyridine receptor (DHPR), by recombinant Mt-PK. We observed that the beta subunit of DHPR was phosphorylated in vitro by Mt-PK. A beta-subunit DHPR peptide containing some of the Ser residues predicted to be phosphorylated was synthesized and found to be a substrate for Mt-PK in vitro. We conclude that the 72-kDa Mt-PK has a protein kinase activity specific for Ser residues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the functional consequences of a mutation in the epithelial Na+ channel that causes a heritable form of salt-sensitive hypertension, Liddle disease. This mutation, identified in the original kindred described by Liddle, introduces a premature stop codon in the channel beta subunit, resulting in a deletion of almost all of the C terminus of the encoded protein. Coexpression of the mutant beta subunit with wild-type alpha and gamma subunits in Xenopus laevis oocytes resulted in an approximately 3-fold increase in the macroscopic amiloride-sensitive Na+ current (INa) compared with the wild-type channel. This change in INa reflected an increase in the overall channel activity characterized by a higher number of active channels in membrane patches. The truncation mutation in the beta subunit of epithelial Na+ channel did not alter the biophysical and pharmacological properties of the channel--including unitary conductance, ion selectivity, or sensitivity to amiloride block. These results provide direct physiological evidence that Liddle disease is related to constitutive channel hyperactivity in the cell membrane. Deletions of the C-terminal end of the beta and gamma subunits of rat epithelial Na+ channel were functionally equivalent in increasing INa, suggesting that the cytoplasmic domain of the gamma subunit might be another molecular target for mutations responsible for salt-sensitive forms of hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed structure-function analysis of human interleukin 5 (hIL5) has been performed. The hIL5 receptor is composed of two different polypeptide chains, the alpha and beta subunits. The alpha subunit alone is sufficient for ligand binding, but association with the beta subunit leads to a 2- to 3-fold increase in binding affinity. The beta chain is shared with the receptors for IL3 and granulocyte/macrophage-colony-stimulating factor--hence the descriptor beta C (C for common). All hIL5 mutants were analyzed in a solid-phase binding assay for hIL5R alpha interaction and in a proliferation assay using IL5-dependent cell lines for receptor-complex activation. Most residues affecting binding to the receptor alpha subunit were clustered in a loop connecting beta-strand 1 and helix B (mutants H38A, K39A, and H41A), in beta-strand 2 (E89A and R91A; weaker effect for E90A) and close to the C terminus (T109A, E110A, W111S, and I112A). Mutations at one position, E13 (Glu13), caused a reduced activation of the hIL5 receptor complex. In the case of E13Q, only 0.05% bioactivity was detected on a hIL5-responsive subclone of the mouse promyelocytic cell line FDC-P1. Moreover, on hIL5-responsive TF1 cells, the same mutant was completely inactive and proved to have antagonistic properties. Interactions of this mutant with both receptor subunits were nevertheless indistinguishable from those of nonmutated hIL5 by crosslinking and Scatchard plot analysis of transfected COS-1 cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The RII beta regulatory subunit of cAMP-dependent protein kinase (PKA) contains an autophosphorylation site and a nuclear location signal, KKRK. We approached the structure-function analysis of RII beta by using site-directed mutagenesis. Ser114 (the autophosphorylation site) of human RII beta was replaced with Ala (RII beta-P) or Arg264 of KKRK was replaced with Met (RII beta-K). ras-transformed NIH 3T3 (DT) cells were transfected with expression vectors for RII beta, RII beta-P, and RII beta-K, and the effects on PKA isozyme distribution and transformation properties were analyzed. DT cells contained PKA-I and PKA-II isozymes in a 1:2 ratio. Over-expression of wild-type or mutant RII beta resulted in an increase in PKA-II and the elimination of PKA-I. Only wild-type RII beta cells demonstrated inhibition of both anchorage-dependent and -independent growth and phenotypic change. The growth inhibitory effect of RII beta overexpression was not due to suppression of ras expression but was correlated with nuclear accumulation of RII beta. DT cells demonstrated growth inhibition and phenotypic change upon treatment with 8-Cl-cAMP. RII beta-P or RII beta-K cells failed to respond to 8-Cl-cAMP. These data suggest that autophosphorylation and nuclear location signal sequences are integral parts of the growth regulatory mechanism of RII beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brefeldin A, a fungal metabolite that inhibits membrane transport, induces the mono(ADP-ribosyl)ation of two cytosolic proteins of 38 and 50 kDa as judged by SDS/PAGE. The 38-kDa substrate has been previously identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report that the 50-kDa BFA-induced ADP-ribosylated substrate (BARS-50) has native forms of 170 and 130 kDa, as determined by gel filtration of rat brain cytosol, indicating that BARS-50 might exist as a multimeric complex. BARS-50 can bind GTP, as indicated by blot-overlay studies with [alpha-32P]GTP and by photoaffinity labeling with guanosine 5'-[gamma-32P] [beta,gamma-(4-azidoanilido)]triphosphate. Moreover, ADP-ribosylation of BARS-50 was completely inhibited by the beta gamma subunit complex of G proteins, while the ADP-ribosylation of GAPDH was unmodified, indicating that this effect was due to an interaction of the beta gamma complex with BARS-50, rather than with the ADP-ribosylating enzyme. Two-dimensional gel electrophoresis and immunoblot analysis shows that BARS-50 is a group of closely related proteins that appear to be different from all the known GTP-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major subassemblies of virulence-associated P pili, the pilus rod (comprised of PapA) and tip fibrillum (comprised of PapE), were reconstituted from purified chaperone-subunit complexes in vitro. Subunits are held in assembly-competent conformations in chaperone-subunit complexes prior to their assembly into mature pili. The PapD chaperone binds, in part, to a conserved motif present at the C terminus of the subunits via a beta zippering interaction. Amino acid residues in this conserved motif were also found to be essential for subunitsubunit interactions necessary for the formation of pili, thus revealing a molecular mechanism whereby the PapD chaperone may prevent premature subunitsubunit interactions in the periplasm. Uncapping of the chaperone-protected C terminus of PapA and PapE was mimicked in vitro by freeze–thaw techniques and resulted in the formation of pilus rods and tip fibrillae, respectively. A mutation in the leading edge of the beta zipper of PapA produces pilus rods with an altered helical symmetry and azimuthal disorder. This change in the number of subunits per turn of the helix most likely reflects involvement of the leading edge of the beta zipper in forming a right-handed helical cylinder. Organelle development is a fundamental process in all living cells, and these studies shed new light on how immunoglobulin-like chaperones govern the formation of virulence-associated organelles in pathogenic bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted disruption of Gα and Gβ genes has established the requirement of an intact G protein signaling pathway for optimal execution of several important physiological processes, including pathogenesis, in the chestnut blight fungus Cryphonectria parasitica. We now report the identification of a G protein signal transduction component, beta disruption mimic factor-1, BDM-1. Disruption of the corresponding gene, bdm-1, resulted in a phenotype indistinguishable from that previously observed after disruption of the Gβ subunit gene, cpgb-1. The BDM-1 deduced amino acid sequence contained several significant clusters of identity with mammalian phosducin, including a domain corresponding to a highly conserved 11-amino acid stretch that has been implicated in binding to the Gβγ dimer and two regions of defined Gβ/phosducin contact points. Unlike the negative regulatory function proposed for mammalian phosducin, the genetic data presented in this report suggest that BDM-1 is required for or facilitates Gβ function. Moreover, disruption of either bdm-1 or cpgb-1 resulted in a significant, posttranscriptional reduction in the accumulation of CPG-1, a key Gα subunit required for a range of vital physiological processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

V-type proton-translocating ATPases (V-ATPases) (EC 3.6.1.3) are electrogenic proton pumps involved in acidification of endomembrane compartments in all eukaryotic cells. V-ATPases from various species consist of 8 to 12 polypeptide subunits arranged into an integral membrane proton pore sector (V0) and a peripherally associated catalytic sector (V1). Several V-ATPase subunits are functionally and structurally conserved among all species examined. In yeast, a 36-kD peripheral subunit encoded by the yeast (Saccharomyces cerevisiae) VMA6 gene (Vma6p) is required for stable assembly of the V0 sector as well as for V1 attachment. Vma6p has been characterized as a nonintegrally associated V0 subunit. A high degree of sequence similarity among Vma6p homologs from animal and fungal species suggests that this subunit has a conserved role in V-ATPase function. We have characterized a novel Vma6p homolog from red beet (Beta vulgaris) tonoplast membranes. A 44-kD polypeptide cofractionated with V-ATPase upon gel-filtration chromatography of detergent-solubilized tonoplast membranes and was specifically cross-reactive with anti-Vma6p polyclonal antibodies. The 44-kD polypeptide was dissociated from isolated tonoplast preparations by mild chaotropic agents and thus appeared to be nonintegrally associated with the membrane. The putative 44-kD homolog appears to be structurally similar to yeast Vma6p and occupies a similar position within the holoenzyme complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two classes of RNA ligands that bound to separate, high affinity nucleic acid binding sites on Q beta replicase were previously identified. RNA ligands to the two sites, referred to as site I and site II, were used to investigate the molecular mechanism of RNA replication employed by the four-subunit replicase. Replication inhibition by site I- and site II-specific ligands defined two subsets of replicatable RNAs. When provided with appropriate 3' ends, ligands to either site served as replication templates. UV crosslinking experiments revealed that site I is associated with the S1 subunit, site II with elongation factor Tu, and polymerization with the viral subunit of the holoenzyme. These results provide the framework for a three site model describing template recognition and product strand initiation by Q beta replicase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated hippocampal inhibitory function and the level of expression of gamma-aminobutyric acid type A (GABAA) receptor mRNA in an in vivo model of epilepsy. Chronic recurrent limbic seizures were induced in rats using injections of pilocarpine. Electrophysiological studies performed on hippocampal slices prepared from control and epileptic animals 1 to 2 months after pilocarpine injections demonstrated a significant hyperexcitability in the epileptic animals. Reduced levels of mRNA expression for the alpha 2 and alpha 5 subunits of the GABAA receptors were evident in the CA1, CA2, and CA3 regions of the hippocampus of epileptic animals. No decrease in mRNA encoding alpha 1, beta 2, or gamma 2 GABAA receptor subunits was observed. In addition, no change in the mRNA levels of alpha CaM kinase II was seen. Selective decreases in mRNA expression did not correlate with neuronal cell loss. The results indicate that selective, long-lasting reduction of GABAA subunit mRNA expression and increased excitability, possibly reflecting loss of GABAergic inhibition, occur in an in vivo model of partial complex epilepsy.