36 resultados para Adp-ribosylation Factor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the participation of guanylate cyclase in the NO pathway. The guanylate cyclase inhibitor, methylene blue, blocked the NO-induced enhancement of EPSCs but only reduced the inhibition of IPSCs indicating that an additional mechanism participates to the depression of synaptic transmission by NO. Using nicotinamide, an inhibitor of ADP-ribosylation, we found that the NO-induced depression of ACh release on the inhibitory synapse also involves ADP-ribosylation mechanism(s). Furthermore, application of SIN-1 paired with cGMP-dependent protein kinase (cGMP-PK) inhibitors showed that cGMP-PK could play a role in the potentiating but not in the depressing effect of NO on ACh release. Increasing the frequency of stimulation of the presynaptic neuron from 1/60 Hz to 0.25 or 1 Hz potentiated the EPSCs and reduced the IPSCs. In these conditions, the potentiating effect of NO on the excitatory synapse was reduced, whereas its depressing effect on the inhibitory synapse was unaffected. Moreover the frequency-dependent enhancement of ACh release in the excitatory synapse was greatly reduced by the inhibition of NO synthase. Our results indicate that NO may be involved in different ways of modulation of synaptic transmission depending on the type of the synapse including synaptic plasticity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosducin is a cytosolic protein predominantly expressed in the retina and the pineal gland that can interact with the betagamma subunits of guanine nucleotide binding proteins (G proteins) and thereby may regulate transmembrane signaling. A cDNA encoding a phosducin-like protein (PhLP) has recently been isolated from rat brain [Miles, M. F., Barhite, S., Sganga, M. & Elliott, M. (1993) Proc. Natl. Acad. Sci. USA 90, 10831-10835. Here we report the expression of PhLP in Escherichia coli and its purification. Recombinant purified PUP inhibited multiple effects of G-protein betagamma subunits. First, it inhibited the betagamma-subunit-dependent ADP-ribosylation of purified alpha(o) by pertussis toxin. Second, it inhibited the GTPase activity of purified G(o). The IC50 value of PhLP in the latter assay was 89 nM, whereas phosducin caused half-maximal inhibition at 17 nM. And finally, PhLP antagonized the enhancement of rhodopsin phosphorylation by purified betagamma subunits. The N terminus of PhLP shows no similarity to the much longer N terminus of phosducin, the region shown to be critical for phosducin-betagamma-subunit interactions. Therefore, PhLP appears to bind to G-protein betagamma subunits by an as yet unknown mode of interaction and may represent an endogenous regulator of G-protein function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-d-ribosyl)-acceptor ADP-d-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP−/− mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by γ-irradiation revealed an extreme sensitivity and a high genomic instability to both agents. Following whole body γ-irradiation (8 Gy) mutant mice died rapidly from acute radiation toxicity to the small intestine. Mice-derived PARP−/− cells displayed a high sensitivity to MNU exposure: a G2/M arrest in mouse embryonic fibroblasts and a rapid apoptotic response and a p53 accumulation were observed in splenocytes. Altogether these results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-induced apoptosis is mediated by caspases, which are cysteine proteases related to interleukin 1β-converting enzyme. We report here that TNF-induced activation of caspases results in the cleavage and activation of cytosolic phospholipase A2 (cPLA2) and that activated cPLA2 contributes to apoptosis. Inhibition of caspases by expression of a cowpox virus-derived inhibitor, CrmA, or by a specific tetrapeptide inhibitor of CPP32/caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited TNF-induced activation of cPLA2 and apoptosis. TNF-induced activation of cPLA2 was accompanied by a cleavage of the 100-kDa cPLA2 to a 70-kDa proteolytic fragment. This cleavage was inhibited by Ac-DEVD-CHO in a similar manner as that of poly(ADP)ribose polymerase, a known substrate of CPP32/caspase-3. Interestingly, specific inhibition of cPLA2 enzyme activity by arachidonyl trifluoromethylketone (AACOCF3) partially inhibited TNF-induced apoptosis without inhibition of caspase activity. Thus, our results suggest a novel caspase-dependent activation pathway for cPLA2 during apoptosis and identify cPLA2 as a mediator of TNF-induced cell death acting downstream of caspases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bleeding and delayed healing of ulcers are well recognized clinical problems associated with the use of aspirin and other nonsteroidal antiinflammatory drugs, which have been attributed to their antiaggregatory effects on platelets. We hypothesized that antiplatelet drugs might interfere with gastric ulcer healing by suppressing the release of growth factors, such as vascular endothelial growth factor (VEGF), from platelets. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily oral treatment with vehicle, aspirin, or ticlopidine (an ADP receptor antagonist) was started 3 days later and continued for 1 week. Ulcer induction resulted in a significant increase in serum levels of VEGF and a significant decrease in serum levels of endostatin (an antiangiogenic factor). Although both aspirin and ticlopidine markedly suppressed platelet aggregation, only ticlopidine impaired gastric ulcer healing and angiogenesis as well as reversing the ulcer-associated changes in serum levels of VEGF and endostatin. The effects of ticlopidine on ulcer healing and angiogenesis were mimicked by immunodepletion of circulating platelets, and ticlopidine did not influence ulcer healing when given to thrombocytopenic rats. Incubation of human umbilical vein endothelial cells with serum from ticlopidine-treated rats significantly reduced proliferation and increased apoptosis, effects reversed by an antibody directed against endostatin. Ticlopidine treatment resulted in increased platelet endostatin content and release. These results demonstrate a previously unrecognized contribution of platelets to the regulation of gastric ulcer healing. Such effects likely are mediated through the release from platelets of endostatin and possibly VEGF. As shown with ticlopidine, drugs that influence gastric ulcer healing may do so in part through altering the ability of platelets to release growth factors.