37 resultados para Absence d’œuvre
Resumo:
A fundamental question about memory and cognition concerns how information is acquired about categories and concepts as the result of encounters with specific instances. We describe a profoundly amnesic patient (E.P.) who cannot learn and remember specific instances--i.e., he has no detectable declarative memory. Yet after inspecting a series of 40 training stimuli, he was normal at classifying novel stimuli according to whether they did or did not belong to the same category as the training stimuli. In contrast, he was unable to recognize a single stimulus after it was presented 40 times in succession. These findings demonstrate that the ability to classify novel items, after experience with other items in the same category, is a separate and parallel memory function of the brain, independent of the limbic and diencephalic structures essential for remembering individual stimulus items (declarative memory). Category-level knowledge can be acquired implicitly by cumulating information from multiple training examples in the absence of detectable conscious memory for the examples themselves.
Resumo:
SJL mice produce little or no IgE in response to polyclonal stimulation with anti-IgD antibody and fail to express interleukin 4 (IL-4) mRNA in the spleen 5 days after injection of anti-IgD, in contrast to other mouse strains that produce substantial amounts of IgE and IL-4. Because IL-4 is critical in IgE production, the possibility that SJL mice are poor IgE producers because their naive T cells fail to differentiate into IL-4 producers must be seriously considered. IL-4 itself is the principal factor determining that naive T cells develop into IL-4 producers. A major source of IL-4 for such differentiation is a population of CD1-specific CD4+ T cells that express NK1.1. These cells produce IL-4 within 90 min of anti-CD3 injection. T cells from SJL mice fail to produce IL-4 in response to injection of anti-CD3. Similarly, SJL T cells and CD4+ thymocytes do not produce IL-4 in response to acute in vitro stimulation. SJL T cells show a marked deficiency in CD4+ cells that express the surface receptors associated with the NK1.1+ T-cell phenotype. This result indicates that the SJL defect in IgE and IL-4 production is associated with, and may be due to, the absence of the CD4+, NK1.1+ T-cell population.
Resumo:
Insulin secretion has been studied in isolated rat pancreatic islets under stringent Ca(2+)-depleted, Ca(2+)-free conditions. Under these conditions, the effect of 16.7 mM glucose to stimulate insulin release was abolished. Forskolin, which activates adenylyl cyclase, also failed to stimulate release in the presence of either low or high glucose concentrations. A phorbol ester (phorbol 12-myristate 13-acetate; PMA) increased the release rate slightly and this was further increased by 16.7 mM glucose. Remarkably, in the presence of both forskolin and PMA, 16.7 mM glucose strongly augmented insulin release. The augmentation was concentration dependent and monophasic and had a temporal profile similar to the "second phase" of glucose-stimulated insulin release, which is seen under normal conditions when Ca2+ is present. Metabolism is required for the effect because mannoheptulose abolished the glucose response. Other nutrient secretagogues, alpha-ketoisocaproate, and the combination of leucine and glutamine augmented release under the same conditions. Norepinephrine, a physiological inhibitor of insulin secretion, totally blocked the stimulation of release by forskolin and PMA and the augmentation of release by glucose. Thus, under the stringent Ca(2+)-free conditions imposed, the stimulation of insulin release by forskolin and PMA, as well as the augmentation of release by glucose, is under normal physiological control. As no increase in intracellular [Ca2+] was observed, the results demonstrate that glucose can increase the rate of exocytosis and insulin release by pancreatic islets in a Ca(2+)-independent manner. This interesting pathway of stimulus-secretion coupling for glucose appears to exert its effect at a site beyond the usual elevation of intracellular [Ca2+] and is not due to an activation by glucose of protein kinase A or C.
Resumo:
The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis.
Resumo:
Some islands in the Gulf of California support very high densities of spiders. Spider density is negatively correlated with island size; many small islands support 50-200 spiders per m3 of cactus. Energy for these spiders comes primarily from the ocean and not from in situ productivity by land plants. We explicitly connect the marine and terrestrial systems to show that insular food webs represent one endpoint of the marine web. We describe two conduits for marine energy entering these islands: shore drift and seabird colonies. Both conduits are related to island area, having a much stronger effect on smaller islands. This asymmetric effect helps to explain the exceptionally high spider densities on small islands. Although productivity sets the maximal potential densities, predation (by scorpions) limits realized spider abundance. Thus, prey availability and predation act in concert to set insular spider abundance.
Resumo:
DNA-strand exchange promoted by Escherichia coli RecA protein normally requires the presence of ATP and is accompanied by ATP hydrolysis, thereby implying a need for ATP hydrolysis. Previously, ATP hydrolysis was shown not to be required; here we demonstrate furthermore that a nucleoside triphosphate cofactor is not required for DNA-strand exchange. A gratuitous allosteric effector consisting of the noncovalent complex of ADP and aluminum fluoride, ADP.AIF4-, can both induce the high-affinity DNA-binding state of RecA protein and support the homologous pairing and exchange of up to 800-900 bp of DNA. These results demonstrate that induction of the functionally active, high-affinity DNA-binding state of RecA protein is needed for RecA protein-promoted DNA-strand exchange and that there is no requirement for a high-energy nucleotide cofactor for the exchange of DNA strands. Consequently, the free energy needed to activate the DNA substrates for DNA-strand exchange is not derived from ATP hydrolysis. Instead, the needed free energy is derived from ligand binding and is transduced to the DNA via the associated ligand-induced structural transitions of the RecA protein-DNA complex; ATP hydrolysis simply destroys the effector ligand. This concept has general applicability to the mechanism of energy transduction by proteins.
Resumo:
Previous biochemical studies have suggested a role for bacterial DNA topoisomerase (TOPO) I in the suppression of R-loop formation during transcription. In this report, we present several pieces of genetic evidence to support a model in which R-loop formation is dynamically regulated during transcription by activities of multiple DNA TOPOs and RNase H. In addition, our results suggest that events leading to the serious growth problems in the absence of DNA TOPO I are linked to R-loop formation. We show that the overexpression of RNase H, an enzyme that degrades the RNA moiety of an R loop, can partially compensate for the absence of DNA TOPO I. We also note that a defect in DNA gyrase can correct several phenotypes associated with a mutation in the rnhA gene, which encodes the major RNase H activity. In addition, we found that a combination of topA and rnhA mutations is lethal.