50 resultados para ASYMMETRIC DIVISION
Resumo:
We studied aquaporins in maize (Zea mays), an important crop in which numerous studies on plant water relations have been carried out. A maize cDNA, ZmTIP1, was isolated by reverse transcription-coupled PCR using conserved motifs from plant aquaporins. The derived amino acid sequence of ZmTIP1 shows 76% sequence identity with the tonoplast aquaporin γ-TIP (tonoplast intrinsic protein) from Arabidopsis. Expression of ZmTIP1 in Xenopus laevis oocytes showed that it increased the osmotic water permeability of oocytes 5-fold; this water transport was inhibited by mercuric chloride. A cross-reacting antiserum made against bean α-TIP was used for immunocytochemical localization of ZmTIP1. These results indicate that this and/or other aquaporins is abundantly present in the small vacuoles of meristematic cells. Northern analysis demonstrated that ZmTIP1 is expressed in all plant organs. In situ hybridization showed a high ZmTIP1 expression in meristems and zones of cell enlargement: tips of primary and lateral roots, leaf primordia, and male and female inflorescence meristems. The high ZmTIP1 expression in meristems and expanding cells suggests that ZmTIP1 is needed (a) for vacuole biogenesis and (b) to support the rapid influx of water into vacuoles during cell expansion.
Resumo:
In wheat (Triticum aestivum) seedlings subjected to a mild water stress (water potential of −0.3 MPa), the leaf-elongation rate was reduced by one-half and the mitotic activity of mesophyll cells was reduced to 42% of well-watered controls within 1 d. There was also a reduction in the length of the zone of mesophyll cell division to within 4 mm from the base compared with 8 mm in control leaves. However, the period of division continued longer in the stressed than in the control leaves, and the final cell number in the stressed leaves reached 85% of controls. Cyclin-dependent protein kinase enzymes that are required in vivo for DNA replication and mitosis were recovered from the meristematic zone of leaves by affinity for p13suc1. Water stress caused a reduction in H1 histone kinase activity to one-half of the control level, although amounts of the enzyme were unaffected. Reduced activity was correlated with an increased proportion of the 34-kD Cdc2-like kinase (an enzyme sharing with the Cdc2 protein of other eukaryotes the same size, antigenic sites, affinity for p13suc1, and H1 histone kinase catalytic activity) deactivated by tyrosine phosphorylation. Deactivation to 50% occurred within 3 h of stress imposition in cells at the base of the meristematic zone and was therefore too fast to be explained by a reduction in the rate at which cells reached mitosis because of slowing of growth; rather, stress must have acted more immediately on the enzyme. The operation of controls slowing the exit from the G1 and G2 phases is discussed. We suggest that a water-stress signal acts on Cdc2 kinase by increasing phosphorylation of tyrosine, causing a shift to the inhibited form and slowing cell production.
Resumo:
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.
Resumo:
Recombinational repair of replication forks can occur either to a crossover (XO) or noncrossover (non-XO) depending on Holliday junction resolution. Once the fork is repaired by recombination, PriA is important for restarting these forks in Escherichia coli. PriA mutants are Rec− and UV sensitive and have poor viability and 10-fold elevated basal levels of SOS expression. PriA sulB mutant cells and their nucleoids were studied by differential interference contrast and fluorescence microscopy of 4′,6-diamidino-2-phenylindole-stained log phase cells. Two populations of cells were seen. Eighty four percent appeared like wild type, and 16% of the cells were filamented and had poorly partitioned chromosomes (Par−). To probe potential mechanisms leading to the two populations of cells, mutations were added to the priA sulB mutant. Mutating sulA or introducing lexA3 decreased, but did not eliminate filamentation or defects in partitioning. Mutating either recA or recB virtually eliminated the Par− phenotype. Filamentation in the recB mutant decreased to 3%, but increased to 28% in the recA mutant. The ability to resolve and/or branch migrate Holliday junctions also appeared crucial in the priA mutant because removing either recG or ruvC was lethal. Lastly, it was tested whether the ability to resolve chromosome dimers caused by XOs was important in a priA mutant by mutating dif and the C-terminal portion of ftsK. Mutation of dif showed no change in phenotype whereas ftsK1∷cat was lethal with priA2∷kan. A model is proposed where the PriA-independent pathway of replication restart functions at forks that have been repaired to non-XOs.
Resumo:
Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.
Resumo:
To ascertain whether the circadian oscillator in the prokaryotic cyanobacterium Synechococcus PCC 7942 regulates the timing of cell division in rapidly growing cultures, we measured the rate of cell division, DNA content, cell size, and gene expression (monitored by luminescence of the PpsbAI::luxAB reporter) in cultures that were continuously diluted to maintain an approximately equal cell density. We found that populations dividing at rates as rapid as once per 10 h manifest circadian gating of cell division, since phases in which cell division slows or stops recur with a circadian periodicity. The data clearly show that Synechococcus cells growing with doubling times that are considerably faster than once per 24 h nonetheless express robust circadian rhythms of cell division and gene expression. Apparently Synechococcus cells are able to simultaneously sustain two timing circuits that express significantly different periods.
Resumo:
Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.
Resumo:
Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.
Resumo:
Recombinational repair of double-stranded DNA gaps was investigated in Ustilago maydis. The experimental system was designed for analysis of repair of an autonomously replicating plasmid containing a cloned gene disabled by an internal deletion. It was discovered that crossing over rarely accompanied gap repair. The strong bias against crossing over was observed in three different genes regardless of gap size. These results indicate that gap repair in U. maydis is unlikely to proceed by the mechanism envisioned in the double-stranded break repair model of recombination, which was developed to account for recombination in Saccharomyces cerevisiae. Experiments aimed at exploring processing of DNA ends were performed to gain understanding of the mechanism responsible for the observed bias. A heterologous insert placed within a gap in the coding sequence of two different marker genes strongly inhibited repair if the DNA was cleaved at the promoter-proximal junction joining the insert and coding sequence but had little effect on repair if the DNA was cleaved at the promoter-distal junction. Gene conversion of plasmid restriction fragment length polymorphism markers engineered in sequences flanking both sides of a gap accompanied repair but was directionally biased. These results are interpreted to mean that the DNA ends flanking a gap are subject to different types of processing. A model featuring a single migrating D-loop is proposed to explain the bias in gap repair outcome based on the observed asymmetry in processing the DNA ends.
Resumo:
A number of alternatively spliced epsilon transcripts have been detected in IgE-producing B cells, in addition to the mRNAs encoding the classical membrane and secreted IgE heavy (H) chains. In a recent study, we examined the protein products of three of these alternatively spliced isoforms and found that they are intracellularly retained and degraded because of their inability to assemble into complete IgE molecules. We have now similarly examined a more recently described epsilon mRNA species that is generated by splicing between a donor splice site immediately upstream of the stop codon in the H-chain constant region exon 4 (CH4) and an acceptor site located in the 3' part of the second membrane exon. We show that this isoform is efficiently secreted by both plasma cells and B lymphocytes and therefore represents a second secreted IgE isoform (epsilon S2). The epsilon S2 H chain is only six amino acids longer than the classical secreted Ig H chain (epsilon S1) and contains a C-terminal cysteine, which is a characteristic sequence feature of mu and alpha H chains. However, unlike IgM and IgA, the epsilon S2 C-terminal cysteine (Cys-554) does not induce polymerization of H2L2 molecules (where L is light chain), but rather creates a disulfide bond between the two H chains that increases the rate of association into covalently bound H2L2 monomers. This C-terminal cysteine also does not function as an intracellular retention element because the epsilon S2 isoform was secreted in amounts equal to that of the epsilon S1, both in B lymphocytes and in plasma cells. The epsilon S2 H chains secreted by B lymphocytes differed from the epsilon S1 H chains in the extent of glycosylation. Interestingly, a difference in glycosylation between B-lymphocytes and plasma cells was also noted for both isoforms. The presence of the Cys-554 also allowed the identification of a distinctive asymmetric pathway of IgE assembly, common to both types of epsilon H chains.
Resumo:
Adult Schistosoma mansoni blood flukes reside in the mesenteric veins of their vertebrate hosts, where they absorb immense quantities of glucose through their tegument by facilitated diffusion. Previously, we obtained S. mansoni cDNAs encoding facilitated-diffusion schistosome glucose transporter proteins 1 and 4 (SGTP1 and SGTP4) and localized SGTP1 to the basal membranes of the tegument and the underlying muscle. In this study, we characterize the expression and localization of SGTP4 during the schistosome life cycle. Antibodies specific to SGTP4 appear to stain only the double-bilayer, apical membranes of the adult parasite tegument, revealing an asymmetric distribution relative to the basal transporter SGTP1. On living worms, SGTP4 is available to surface biotinylation, suggesting that it is exposed at the hose-parasite interface. SGTP4 is detected shortly after the transformation of free-living, infectious cercariae into schistosomula and coincides with the appearance of the double membrane. Within 15 min after transformation, anti-SGTP4 staining produces a bright, patchy distribution at the surface of schistosomula, which becomes contiguous over the entire surface of the schistosomula by 24 hr after transformation. SGTP4 is not detected in earlier developmental stages (eggs, sporocysts, and cercariae) that do not possess the specialized double membrane. Thus, SGTP4 appears to be expressed only in the mammalian stages of the parasite's life cycle and specifically localized within the host-interactive, apical membranes of the tegument.
Resumo:
In PCR, DNA polymerases from thermophilic bacteria catalyze the extension of primers annealed to templates as well as the structure-specific cleavage of the products of primer extension. Here we show that cleavage by Thermus aquaticus and Thermus thermophilus DNA polymerases can be precise and substantial: it occurs at the base of the stem-loop structure assumed by the single strand products of primer extension using as template a common genetic element, the promoter-operator of the Escherichia coli lactose operon, and may involve up to 30% of the products. The cleavage is independent of primer, template, and triphosphates, is dependent on substrate length and temperature, requires free ends and Mg2+, and is absent in DNA polymerases lacking the 5'-->3' exonuclease, such as the Stoffel fragment and the T7 DNA polymerase. Heterogeneity of the extension products results also from premature detachment of the enzyme approaching the 5' end of the template.
Resumo:
The conditioning of culture medium by the production of growth-regulatory substances is a well-established phenomenon with eukaryotic cells. It has recently been shown that many prokaryotes are also capable of modulating growth, and in some cases sensing cell density, by production of extracellular signaling molecules, thereby allowing single celled prokaryotes to function in some respects as multicellular organisms. As Escherichia coli shifts from exponential growth to stationary growth, many changes occur, including cell division leading to formation of short minicells and expression of numerous genes not expressed in exponential phase. An understanding of the coordination between the morphological changes associated with cell division and the physiological and metabolic changes is of fundamental importance to understanding regulation of the prokaryotic cell cycle. The ftsQA genes, which encode functions required for cell division in E. coli, are regulated by promoters P1 and P2, located upstream of the ftsQ gene. The P1 promoter is rpoS-stimulated and the second, P2, is regulated by a member of the LuxR subfamily of transcriptional activators, SdiA, exhibiting features characteristic of an autoinduction (quorum sensing) mechanism. The activity of SdiA is potentiated by N-acyl-homoserine lactones, which are the autoinducers of luciferase synthesis in luminous marine bacteria as well as of pathogenesis functions in several pathogenic bacteria. A compound(s) produced by E. coli itself during growth in Luria Broth stimulates transcription from P2 in an SdiA-dependent process. Another substance(s) enhances transcription of rpoS and (perhaps indirectly) of ftsQA via promoter P1. It appears that this bimodal control mechanism may comprise a fail-safe system, such that transcription of the ftsQA genes may be properly regulated under a variety of different environmental and physiological conditions.