50 resultados para 5 beta


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a dominant-negative approach in vivo to assess the strong, early upregulation of thyroid hormone receptor beta (TR beta) gene in response to thyroid hormone, characteristic of the onset of natural and thyroid hormone-induced amphibian metamorphosis, 3,3',5-Triiodo-thyronine (T3) treatment of organ cultures of premetamorphic Xenopus tadpole tails coinjected in vivo with the wild-type Xenopus TR beta (wt-xTR beta) and three different thyroid responsive element chloramphenicol acetyltransferase (TRE-CAT) reporter constructs, including a direct repeat +4 (DR +4) element in the -200/+87 fragment of the xTR beta promoter, resulted in a 4- to 8-fold enhancement of CAT activity. Two human C-terminal TR beta 1 mutants (delta-hTR beta 1 and Ts-hTR beta 1), an artificial Xenopus C-terminal deletion mutant (mt-xTR beta), and the oncogenic viral homology v-erbA, none of which binds T3, inhibited this T3 response of the endogenous wt-xTR in Xenopus XTC-2 cells cotransfected with the -1600/+87 xTR beta promoter-CAT construct, the potency of the dominant-negative effect of these mutant TRs being a function of the strength of their heterodimerization with Xenopus retinoid X receptor gamma. Coinjection of the dominant-negative Xenopus and human mutant TR beta s into Xenopus tadpole tails totally abolished the T3 responsiveness of the wt-xTR beta with different TREs, including the natural DR +4 TRE of the xTR beta promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) is expressed in rat glomerular mesangial cells upon exposure to the inflammatory cytokine interleukin 1 beta (IL-1 beta). We have reported that nanomolar concentrations of dexamethasone suppress IL-1 beta-induced iNOS protein expression and production of nitrite, the stable end product of NO formation, without affecting IL-1 beta-triggered increase in iNOS mRNA levels. We now have studied the mechanisms by which dexamethasone suppresses IL-1 beta-stimulated iNOS expression in mesangial cells. Surprisingly, nuclear run-on transcription experiments demonstrate that dexamethasone markedly attenuates IL-1 beta-induced iNOS gene transcription. However, this is counteracted by a prolongation of the half-life of iNOS mRNA from 1 h to 2.5 h by dexamethasone. Moreover, dexamethasone drastically reduces the amount of iNOS protein by reduction of iNOS mRNA translation and increased degradation of iNOS protein. These results indicate that glucocorticoids act at multiple levels to regulate iNOS expression, thus providing important insights into the treatment of inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of cAMP subcellular compartmentation in the progress of beta-adrenergic stimulation of cardiac L-type calcium current (ICa) was investigated by using a method based on the use of whole-cell patch-clamp recording and a double capillary for extracellular microperfusion. Frog ventricular cells were sealed at both ends to two patch-clamp pipettes and positioned approximately halfway between the mouths of two capillaries that were separated by a 5-micron thin wall. ICa could be inhibited in one half or the other by omitting Ca2+ from one solution or the other. Exposing half of the cell to a saturating concentration of isoprenaline (ISO, 1 microM) produced a nonmaximal increase in ICa (347 +/- 70%; n = 4) since a subsequent application of ISO to the other part induced an additional effect of nearly similar amplitude to reach a 673 +/- 130% increase. However, half-cell exposure to forskolin (FSK, 30 microM) induced a maximal stimulation of ICa (561 +/- 55%; n = 4). This effect was not the result of adenylyl cyclase activation due to FSK diffusion in the nonexposed part of the cell. To determine the distant effects of ISO and FSK on ICa, the drugs were applied in a zero-Ca solution. Adding Ca2+ to the drug-containing solutions allowed us to record the local effect of the drugs. Dose-response curves for the local and distant effects of ISO and FSK on ICa were used as an index of cAMP concentration changes near the sarcolemma. We found that ISO induced a 40-fold, but FSK induced only a 4-fold, higher cAMP concentration close to the Ca2+ channels, in the part of the cell exposed to the drugs, than it did in the rest of the cell. cAMP compartmentation was greatly reduced after inhibition of phosphodiesterase activity with 3-isobutyl-methylxanthine, suggesting the colocalization of enzymes involved in the cAMP cascade. We conclude that beta-adrenergic receptors are functionally coupled to nearby Ca2+ channels via local elevations of cAMP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor type beta (TGF-beta) is a multifunctional factor that regulates proliferation and differentiation of many cell types. TGF-beta mediates its effects by binding to and activating cell surface receptors that possess serine/threonine kinase activity. However, the intracellular signaling pathways through which TGF-beta receptors act remain largely unknown. Here we show that TGF-beta activates a 78-kDa protein (p78) serine/threonine kinase as evidenced by an in-gel kinase assay. Ligand-induced activation of the kinase was near-maximal 5 min after TGF-beta addition to the cells and occurred exclusively on serine and threonine residues. This kinase is distinct from TGF-beta receptor type II, as well as several cytoplasmic serine/threonine kinases of similar size, including protein kinase C, Raf, mitogen-activated protein kinase kinase kinase, and ribosomal S6 kinase. Indeed, these kinases can be separated almost completely from p78 kinase by immunoprecipitation with specific antibodies. Furthermore, using different cell lines, we demonstrate that p78 kinase is activated only in cells for which TGF-beta can act as a growth inhibitory factor. These data raise the interesting possibility that protein serine/threonine kinases contribute to the intracellular relay of biological signals originating from receptor serine/threonine kinases such as the TGF-beta receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Positioned nucleosomes contribute to both the structure and the function of the chromatin fiber and can play a decisive role in controlling gene expression. We have mapped, at high resolution, the translational positions adopted by limiting amounts of core histone octamers reconstituted onto 4.4 kb of DNA comprising the entire chicken adult beta-globin gene, its enhancer, and flanking sequences. The octamer displays extensive variation in its affinity for different positioning sites, the range exhibited being about 2 orders of magnitude greater than that of the initial binding of the octamer. Strong positioning sites are located 5' and 3' of the globin gene and in the second intron but are absent from the coding regions. These sites exhibit a periodicity (approximately 200 bp) similar to the average spacing of nucleosomes on the inactive beta-globin gene in vivo, which could indicate their involvement in packaging the gene into higher-order chromatin structure. Overlapping, alternative octamer positioning sites commonly exhibit spacings of 20 and 40 bp, but not of 10 bp. These short-range periodicities could reflect features of the core particle structure contributing to the pronounced sequence-dependent manner in which the core histone octamer interacts with DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the in vivo role(s) of type I interferons (IFNs) and to determine the role of a component of the type I IFN receptor (IFNAR1) in mediating responses to these IFNs, we generated mice with a null mutation (-/-) in the IFNAR1 gene. Despite compelling evidence for modulation of cell proliferation and differentiation by type I IFNs, there were no gross signs of abnormal fetal development or morphological changes in adult IFNAR1-/- mice. However, abnormalities of hemopoietic cells were detected in IFNAR1 -/- mice. Elevated levels of myeloid lineage cells were detected in peripheral blood and bone marrow by staining with Mac-1 and Gr-1 antibodies. Furthermore, bone marrow macrophages from IFNAR1 -/- mice showed abnormal responses to colony-stimulating factor 1 and lipopolysaccharide. IFNAR1 -/- mice were highly susceptible to viral infection: viral titers were undetected 24 hr after infection of IFNAR1 +/+ mice but were extremely high in organs of IFNAR1 -/- mice, demonstrating that the type I IFN system is a major acute antiviral defence. In cell lines derived from IFNAR1 -/- mice, there was no signaling in response to IFN-alpha or -beta as measured by induction of 2'-5' oligoadenylate synthetase, antiviral, or antiproliferative responses. Importantly, these studies demonstrate that type I IFNs function in the development and responses of myeloid lineage cells, particularly macrophages, and that the IFNAR1 receptor component is essential for antiproliferative and antiviral responses to IFN-alpha and -beta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brefeldin A, a fungal metabolite that inhibits membrane transport, induces the mono(ADP-ribosyl)ation of two cytosolic proteins of 38 and 50 kDa as judged by SDS/PAGE. The 38-kDa substrate has been previously identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report that the 50-kDa BFA-induced ADP-ribosylated substrate (BARS-50) has native forms of 170 and 130 kDa, as determined by gel filtration of rat brain cytosol, indicating that BARS-50 might exist as a multimeric complex. BARS-50 can bind GTP, as indicated by blot-overlay studies with [alpha-32P]GTP and by photoaffinity labeling with guanosine 5'-[gamma-32P] [beta,gamma-(4-azidoanilido)]triphosphate. Moreover, ADP-ribosylation of BARS-50 was completely inhibited by the beta gamma subunit complex of G proteins, while the ADP-ribosylation of GAPDH was unmodified, indicating that this effect was due to an interaction of the beta gamma complex with BARS-50, rather than with the ADP-ribosylating enzyme. Two-dimensional gel electrophoresis and immunoblot analysis shows that BARS-50 is a group of closely related proteins that appear to be different from all the known GTP-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage-gated K+ channels are important modulators of the cardiac action potential. However, the correlation of endogenous myocyte currents with K+ channels cloned from human heart is complicated by the possibility that heterotetrameric alpha-subunit combinations and function-altering beta subunits exist in native tissue. Therefore, a variety of subunit interactions may generate cardiac K+ channel diversity. We report here the cloning of a voltage-gated K+ channel beta subunit, hKv beta 3, from adult human left ventricle that shows 84% and 74% amino acid sequence identity with the previously cloned rat Kv beta 1 and Kv beta 2 subunits, respectively. Together these three Kv beta subunits share > 82% identity in the carboxyl-terminal 329 aa and show low identity in the amino-terminal 79 aa. RNA analysis indicated that hKv beta 3 message is 2-fold more abundant in human ventricle than in atrium and is expressed in both healthy and diseased human hearts. Coinjection of hKv beta 3 with a human cardiac delayed rectifier, hKv1.5, in Xenopus oocytes increased inactivation, induced an 18-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 8.0 msec vs. 35.4 msec at -50 mV). hKv beta 3 was localized to human chromosome 3 by using a human/rodent cell hybrid mapping panel. These data confirm the presence of functionally important K+ channel beta subunits in human heart and indicate that beta-subunit composition must be accounted for when comparing cloned channels with endogenous cardiac currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits G beta 1 and G gamma 2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by G beta gamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.