48 resultados para 46 Myogenic regulatory factors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca2+, which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the α-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adult body plan of bilaterians is achieved by imposing regional specifications on pluripotential cells. The establishment of spatial domains is governed in part by regulating expression of transcription factors. The key to understanding bilaterian evolution is contingent on our understanding of how the regulation of these transcription factors influenced bilaterian stem-group evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to the F-type ATPases, which use a proton gradient to generate ATP, the V-type enzymes use ATP to actively transport protons into organelles and extracellular compartments. We describe here the structure of the H-subunit (also called Vma13p) of the yeast enzyme. This is the first structure of any component of a V-type ATPase. The H-subunit is not required for assembly but plays an essential regulatory role. Despite the lack of any apparent sequence homology the structure contains five motifs similar to the so-called HEAT or armadillo repeats seen in the importins. A groove, which is occupied in the importins by the peptide that targets proteins for import into the nucleus, is occupied here by the 10 amino-terminal residues of subunit H itself. The structural similarity suggests how subunit H may interact with the ATPase itself or with other proteins. A cleft between the amino- and carboxyl-terminal domains also suggests another possible site of interaction with other factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Runx (Cbfa/AML) transcription factors are critical for tissue-specific gene expression. A unique targeting signal in the C terminus directs Runx factors to discrete foci within the nucleus. Using Runx2/CBFA1/AML3 and its essential role in osteogenesis as a model, we investigated the fundamental importance of fidelity of subnuclear localization for tissue differentiating activity by deleting the intranuclear targeting signal via homologous recombination. Mice homozygous for the deletion (Runx2ΔC) do not form bone due to maturational arrest of osteoblasts. Heterozygotes do not develop clavicles, but are otherwise normal. These phenotypes are indistinguishable from those of the homozygous and heterozygous null mutants, indicating that the intranuclear targeting signal is a critical determinant for function. The expressed truncated Runx2ΔC protein enters the nucleus and retains normal DNA binding activity, but shows complete loss of intranuclear targeting. These results demonstrate that the multifunctional N-terminal region of the Runx2 protein is not sufficient for biological activity. We conclude that subnuclear localization of Runx factors in specific foci together with associated regulatory functions is essential for control of Runx-dependent genes involved in tissue differentiation during embryonic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interleukin 2 (IL-2) gene is subject to two types of regulation: its expression is T-lymphocyte-specific and it is acutely dependent on specific activation signals. The IL-2 transcriptional apparatus integrates multiple types of biochemical information in determining whether or not the gene will be expressed, using multiple diverse transcription factors that are each optimally activated or inhibited by different signaling pathways. When activation of one or two of these factors is blocked IL-2 expression is completely inhibited. The inability of the other, unaffected factors to work is explained by the striking finding that none of the factors interacts stably with its target site in the IL-2 enhancer unless all the factors are present. Coordinate occupancy of all the sites in the minimal enhancer is apparently maintained by continuous assembly and disassembly cycles that respond to the instantaneous levels of each factor in the nuclear compartment. In addition, the minimal enhancer undergoes specific increases in DNase I accessibility, consistent with dramatic changes in chromatin structure upon activation. Still to be resolved is what interaction(s) conveys T-lineage specificity. In the absence of activating signals, the minimal IL-2 enhancer region in mature T cells is apparently unoccupied, exactly as in non-T lineage cells. However, in a conserved but poorly studied upstream region, we have now mapped several novel sites of DNase I hypersensitivity in vivo that constitutively distinguish IL-2 producer type T cells from cell types that cannot express IL-2. Thus a distinct domain of the IL-2 regulatory sequence may contain sites for competence- or lineage-marking protein contacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the MyoD family of muscle-specific basic helix-loop-helix (bHLH) proteins function within a genetic pathway to control skeletal muscle development. Mutational analyses of these factors suggested that their DNA binding domains mediated interaction with a coregulator required for activation of muscle-specific transcription. Members of the myocyte enhancer binding factor 2 (MEF2) family of MADS-box proteins are expressed at high levels in muscle and neural cells and at lower levels in several other cell types. MEF2 factors are unable to activate muscle gene expression alone, but they potentiate the transcriptional activity of myogenic bHLH proteins. This potentiation appears to be mediated by direct interactions between the DNA binding domains of these different types of transcription factors. Biochemical and genetic evidence suggests that MEF2 factors are the coregulators for myogenic bHLH proteins. The presence of MEF2 and cell-specific bHLH proteins in other cell types raises the possibility that these proteins may also cooperate to regulate other programs of cell-specific gene expression. We present a model to account for such cooperative interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of gene expression through alternative pre-mRNA splicing appears to occur in all metazoans, but most of our knowledge about splicing regulators derives from studies on genetically identified factors from Drosophila. Among the best studied of these is the transformer-2 (TRA-2) protein which, in combination with the transformer (TRA) protein, directs sex-specific splicing of pre-mRNA from the sex determination gene doublesex (dsx). Here we report the identification of htra-2 alpha, a human homologue of tra-2. Two alternative types of htra-2 alpha cDNA clones were identified that encode different protein isoforms with striking organizational similarity to Drosophila tra-2 proteins. When expressed in flies, one hTRA-2 alpha isoform partially replaces the function of Drosophila TRA-2, affecting both female sexual differentiation and alternative splicing of dsx pre-mRNA. Like Drosophila TRA-2, the ability of hTRA-2 alpha to regulate dsx is female-specific and depends on the presence of the dsx splicing enhancer. These results demonstrate that htra-2 alpha has conserved a striking degree of functional specificity during evolution and leads us to suggest that, although they are likely to serve different roles in development, the tra-2 products of flies and humans have similar molecular functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The herpes simplex virus 1 infected cell protein 4 (ICP4) binds to DNA and regulates gene expression both positively and negatively. EAP (Epstein-Barr virus-encoded small nuclear RNA-associated protein) binds to small nonpolyadenylylated nuclear RNAs and is found in nucleoli and in ribosomes, where it is also known as L22. We report that EAP interacts with a domain of ICP4 that is known to bind viral DNA response elements and transcriptional factors. In a gel-shift assay, a glutathione S-transferase (GST)-EAP fusion protein disrupted the binding of ICP4 to its cognate site on DNA in a dose-dependent manner. This effect appeared to be specifically due to EAP binding to ICP4 because (i) GST alone did not alter the binding of ICP4 to DNA, (ii) GST-EAP did not bind to the probe DNA, and (iii) GST-EAP did not influence the binding of the alpha gene trans-inducing factor (alphaTIF or VP16) to its DNA cognate site. Early in infection, ICP4 was dispersed throughout the nucleoplasm, whereas EAP was localized to the nucleoli. Late in infection, EAP was translocated from nucleoli and colocalized with ICP4 in small, dense nuclear structures. The formation of dense structures and the colocalization of EAP and ICP4 did not occur if virus DNA synthesis and late gene expression were prevented by the infection of cells at the nonpermissive temperature with a mutant virus defective in DNA synthesis, or in cells infected and maintained in the presence of phosphonoacetate, which is an inhibitor of viral DNA synthesis. These results suggest that the translocation of EAP from the nucleolus to the nucleoplasm is a viral function and that EAP plays a role in the regulatory functions expressed by ICP4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we used the mutant muscle cell line NFB4 to study the balance between proliferation and myogenic differentiation. We show that removal of serum, which induced the parental C2C12 cells to withdraw from the cell cycle and differentiate, had little effect on NFB4 cells. Gene products characteristic of the proliferation state, such as c-Jun, continued to accumulate in the mutant cells in low serum, whereas those involved in differentiation, like myogenin, insulin-like growth factor II (IGF-II), and IGF-binding protein 5 (IGFBP-5) were undetectable. Moreover, NFB4 cells displayed a unique pattern of tyrosine phosphorylated proteins, especially in low serum, suggesting that the signal transduction pathway(s) that controls differentiation is not properly regulated in these cells. Treatment of NFB4 cells with exogenous IGF-I or IGF-II at concentrations shown to promote myogenic differentiation in wild-type cells resulted in activation of myogenin but not MyoD gene expression, secretion of IG-FBP-5, changes in tyrosine phosphorylation, and enhanced myogenic differentiation. Similarly, transfection of myogenin expression constructs also enhanced differentiation and resulted in activation of IGF-II expression, showing that myogenin and IGF-II cross-activate each other's expression. However, in both cases, the expression of Jun mRNA remained elevated, suggesting that IGFs and myogenin cannot overcome all aspects of the block to differentiation in NFB4 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle and adipose tissue development often has a reciprocal relationship in vivo, particularly in myodystrophic states. We have investigated whether determined myoblasts with no inherent adipogenic potential can be induced to transdifferentiate into mature adipocytes by the ectopic expression of two adipogenic transcription factors, PPAR gamma and C/EBP alpha. When cultured under optimal conditions for muscle differentiation, murine G8 myoblasts expressing PPAR gamma and C/EBP alpha show markedly reduced levels of the myogenic basic helix-loop-helix proteins MyoD, myogenin, MRF4, and myf5 and are completely unable to differentiate into myotubes. Under conditions permissive for adipogenesis including a PPAR activator, these cells differentiate into mature adipocytes that express molecular markers characteristic of this lineage. Our results demonstrate that a developmental switch between these two related but highly specialized cell types can be controlled by the expression of key adipogenic transcription factors. These factors have an ability to inhibit myogenesis that is temporally and functionally separate from their ability to stimulate adipogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phylogenetic approach was used to identify conserved regions of the transcriptional regulator Runt. Alignment of the deduced protein sequences from Drosophila melanogaster, Drosophila pseudoobscura, and Drosophila virilis revealed eight blocks of high sequence homology separated by regions with little or no homology. The largest conserved block contains the Runt domain, a DNA and protein binding domain conserved in a small family of mammalian transcription factors. The functional properties of the Runt domain from the D. melanogaster gene and the human AML1 (acute myeloid leukemia 1) gene were compared in vitro and in vivo. Electrophoretic mobility-shift assays with Runt/AML1 chimeras demonstrated that the different DNA binding properties of Runt and AML1 are due to differences within their respective Runt domains. Ectopic expression experiments indicated that proteins containing the AML1 Runt domain function in Drosophila embryos and that sequences outside of this domain are important in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein-Barr virus EBNA-1 gene product is essential for latent replication of the virus. In transformed cells characterized by the most restricted patterns of viral latent gene expression, EBNA-1 transcription is driven from the Fp promoter. We have used genetic and biochemical techniques to study the promoter-proximal elements that regulate Fp expression in B cells. We show that a 114-bp fragment of DNA spanning the Fp "TATA" box functions as a remarkably active transcriptional regulatory element in B cells. Two host factors, Sp1 and LR1, regulate Fp transcription from the promoter-proximal region. Sp1 binds a single site just downstream of the TATA box, and LR1 binds two sites just upstream of the TATA box. Transcripts from both the viral genome and the minimal promoter initiate at the same unique site, and one function of LR1 at Fp is to direct initiation to this unique start site. In contrast to Sp1, which is ubiquitous, LR1 is present only in activated B cells and may contribute to cell-type-specific transformation by Epstein-Barr virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granzyme B serine protease is found in the granules of activated cytotoxic T cells and in natural and lymphokine-activated killer cells. This protease plays a critical role in the rapid induction of target cell DNA fragmentation. The DNA regulatory elements that are responsible for the specificity of granzyme B gene transcription in activated T-cells reside between nt -148 and +60 (relative to the transcription start point at +1) of the human granzyme B gene promoter. This region contains binding sites for the transcription factors Ikaros, CBF, Ets, and AP-1. Mutational analysis of the human granzyme B promoter reveals that the Ikaros binding site (-143 to -114) and the AP-1/CBF binding site (-103 to -77) are essential for the activation of transcription in phytohemagglutinin-activated peripheral blood lymphocytes, whereas mutation of the Ets binding site does not affect promoter activity in these cells.