48 resultados para 16S RIBOSOMAL-RNA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A role for rRNA in peptide chain termination was indicated several years ago by isolation of a 168 rRNA (small subunit) mutant of Escherichia coli that suppressed UGA mutations. In this paper, we describe another interesting rRNA mutant, selected as a translational suppressor of the chain-terminating mutant trpA (UGA211) of E. coli. The finding that it suppresses UGA at two positions in trpA and does not suppress the other two termination codons, UAA and UAG, at the same codon positions (or several missense mutations, including UGG, available at one of the two positions) suggests a defect in UGA-specific termination. The suppressor mutation was mapped by plasmid fragment exchanges and in vivo suppression to domain II of the 23S rRNA gene of the rrnB operon. Sequence analysis revealed a single base change of G to A at residue 1093, an almost universally conserved base in a highly conserved region known to have specific interactions with ribosomal proteins, elongation factor G, tRNA in the A-site, and the peptidyltransferase region of 23S rRNA. Several avenues of action of the suppressor mutation are suggested, including altered interactions with release factors, ribosomal protein L11, or 16S rRNA. Regardless of the mechanism, the results indicate that a particular residue in 23S rRNA affects peptide chain termination, specifically in decoding of the UGA termination codon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many viruses regulate protein synthesis by −1 ribosomal frameshifting using an RNA pseudoknot. Frameshifting is vital for viral reproduction. Using the information gained from the recent high-resolution crystal structure of the beet western yellow virus pseudoknot, a systematic mutational analysis has been carried out in vitro and in vivo. We find that specific nucleotide tertiary interactions at the junction between the two stems of the pseudoknot are crucial. A triplex is found between stem 1 and loop 2, and triplex interactions are required for frameshifting function. For some mutations, loss of one hydrogen bond is sufficient to abolish frameshifting. Furthermore, mutations near the 5′ end of the pseudoknot can increase frameshifting by nearly 300%, possibly by modifying ribosomal contacts. It is likely that the selection of suitable mutations can thus allow viruses to adjust frameshifting efficiencies and thereby regulate protein synthesis in response to environmental change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel database, under the acronym RISSC (Ribosomal Intergenic Spacer Sequence Collection), has been created. It compiles more than 1600 entries of edited DNA sequence data from the 16S–23S ribosomal spacers present in most prokaryotes and organelles (e.g. mitochondria and chloroplasts) and is accessible through the Internet (http://ulises.umh.es/RISSC), where systematic searches for specific words can be conducted, as well as BLAST-type sequence searches. Additionally, a characteristic feature of this region, the presence/absence and nature of tRNA genes within the spacer, is included in all the entries, even when not previously indicated in the original database. All these combined features could provide a useful documen­tation tool for studies on evolution, identification, typing and strain characterization, among others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of the 2.4-Å resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2′ OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3′ terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 70-kDa protein was specifically induced in Escherichia coli when the culture temperature was shifted from 37 to 15 degrees C. The protein was identified to be the product of the deaD gene (reassigned csdA) encoding a DEAD-box protein. Furthermore, after the shift from 37 to 15 degrees C, CsdA was exclusively localized in the ribosomal fraction and became a major ribosomal-associated protein in cells grown at 15 degrees C. The csdA deletion significantly impaired cell growth and the synthesis of a number of proteins, specifically the derepression of heat-shock proteins, at low temperature. Purified CsdA was found to unwind double-stranded RNA in the absence of ATP. Therefore, the requirement for CsdA in derepression of heat-shock protein synthesis is a cold shock-induced function possibly mediated by destabilization of secondary structures previously identified in the rpoH mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonribosomal nucleolar protein gar2 is required for 18S rRNA and 40S ribosomal subunit production in Schizosaccharomyces pombe. We have investigated the consequences of the absence of each structural domain of gar2 on cell growth, 18S rRNA production, and nucleolar structure. Deletion of gar2 RNA-binding domains (RBDs) causes stronger inhibition of growth and 18S rRNA accumulation than the absence of the whole protein, suggesting that other factors may be titrated by its remaining N-terminal basic/acidic serine-rich domain. These drastic functional defects correlate with striking nucleolar hypertrophy. Point mutations in the conserved RNP1 motifs of gar2 RBDs supposed to inhibit RNA–protein interactions are sufficient to induce severe nucleolar modifications but only in the presence of the N-terminal domain of the protein. Gar2 and its mutants also distribute differently in glycerol gradients: gar2 lacking its RBDs is found either free or assembled into significantly larger complexes than the wild-type protein. We propose that gar2 helps the assembly on rRNA of factors necessary for 40S subunit synthesis by providing a physical link between them. These factors may be recruited by the N-terminal domain of gar2 and may not be released if interaction of gar2 with rRNA is impaired.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intact Escherichia coli ribosomes have been projected into the gas phase of a mass spectrometer by means of nanoflow electrospray techniques. Species with mass/charge ratios in excess of 20,000 were detected at the level of individual ions by using time-of-flight analysis. Once in the gas phase the stability of intact ribosomes was investigated and found to increase as a result of cross-linking ribosomal proteins to the rRNA. By lowering the Mg2+ concentration in solutions containing ribosomes the particles were found to dissociate into 30S and 50S subunits. The resolution of the charge states in the spectrum of the 30S subunit enabled its mass to be determined as 852,187 ± 3,918 Da, a value within 0.6% of that calculated from the individual proteins and the 16S RNA. Further dissociation into smaller macromolecular complexes and then individual proteins could be induced by subjecting the particles to increasingly energetic gas phase collisions. The ease with which proteins dissociated from the intact species was found to be related to their known interactions in the ribosome particle. The results show that emerging mass spectrometric techniques can be used to characterize a fully functional biological assembly as well as its isolated components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of aminoglycosides have been reported to interact and interfere with the function of various RNA molecules. Among these are 16S rRNA, the group I intron, and the hammerhead ribozymes. In this report we show that cleavage by RNase P RNA in the absence as well as in the presence of the RNase P protein is inhibited by several aminoglycosides. Among the ones we tested, neomycin B was found to be the strongest inhibitor with a Ki value in the micromolar range (35 μM). Studies of lead(II)-induced cleavage of RNase P RNA suggested that binding of neomycin B interfered with the binding of divalent metal ions to the RNA. Taken together, our findings suggest that aminoglycosides compete with Mg2+ ions for functionally important divalent metal ion binding sites. Thus, RNase P, which is an essential enzyme, is indeed a potential drug target that can be used to develop new drugs by using various aminoglycosides as lead compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of RNA m5C methyl transferases (MTases) containing over 55 members in eight subfamilies has been identified recently by an iterative search of the genomic sequence databases by using the known 16S rRNA m5C 967 MTase, Fmu, as an initial probe. The RNA m5C MTase family contained sequence motifs that were highly homologous to motifs in the DNA m5C MTases, including the ProCys sequence that contains the essential Cys catalyst of the functionally similar DNA-modifying enzymes; it was reasonable to assign the Cys nucleophile to be that in the conserved ProCys. The family also contained an additional conserved Cys residue that aligns with the nucleophilic catalyst in m5U54 tRNA MTase. Surprisingly, the mutant of the putative Cys catalyst in the ProCys sequence was active and formed a covalent complex with 5-fluorocytosine-containing RNA, whereas the mutant at the other conserved Cys was inactive and unable to form the complex. Thus, notwithstanding the highly homologous sequences and similar functions, the RNA m5C MTase uses a different Cys as a catalytic nucleophile than the DNA m5C MTases. The catalytic Cys seems to be determined, not by the target base that is modified, but by whether the substrate is DNA or RNA. The function of the conserved ProCys sequence in the RNA m5C MTases remains unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Rlp7 protein has extensive identity and similarity to the large ribosomal subunit L7 proteins and shares an RNA-binding domain with them. Rlp7p is not a ribosomal protein; however, it is encoded by an essential gene and therefore must perform a function essential for cell growth. In this report, we show that Rlp7p is a nucleolar protein that plays a critical role in processing of precursors to the large ribosomal subunit RNAs. Pulse–chase labeling experiments with Rlp7p-depleted cells reveal that neither 5.8SS, 5.8SL, nor 25S is produced, indicating that both the major and minor processing pathways are affected. Analysis of processing intermediates by primer extension indicates that Rlp7p-depleted cells accumulate the 27SA3 precursor RNA, which is normally the major substrate (85%) used to produce the 5.8S and 25S rRNAs, and the ratio of 27SBL to 27SBS precursors changes from approximately 1:8 to 8:1 (depleted cells). Because 27SA3 is the direct precursor to 27SBS, we conclude that Rlp7p is specifically required for the 5′ to 3′ exonucleolytic trimming of the 27SA3 into the 27SBS precursor. As it is essential for processing in both the major and minor pathways, we propose that Rlp7p may act as a specificity factor that binds precursor rRNAs and tethers the enzymes that carry out the early 5′ to 3′ exonucleolytic reactions that generate the mature rRNAs. Rlp7p may also be required for the endonucleolytic cleavage in internal transcribed spacer 2 that separates the 5.8S rRNA from the 25S rRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gag–pol and HTLV-2 gag–pro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a deficit in 40S ribosomal subunits. Subsequent analyses of pre-rRNA processing by pulse–chase labeling, northern hybridization and primer extension revealed that the early steps of cleavage of the 35S precursor at sites A1 and A2 are inhibited and delayed at site A0. Synthesis of 18S rRNA, the RNA moiety of the 40S subunit, is thereby blocked in the absence of Dbp8p. The involvement of Dbp8p as a bona fide RNA helicase in ribosome biogenesis is strongly supported by the loss of Dbp8p in vivo function obtained by site-directed mutagenesis of some conserved motifs carrying the enzymatic properties of the protein family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evernimicin (Evn), an oligosaccharide antibiotic, interacts with the large ribosomal subunit and inhibits bacterial protein synthesis. RNA probing demonstrated that the drug protects a specific set of nucleotides in the loops of hairpins 89 and 91 of 23S rRNA in bacterial and archaeal ribosomes. Spontaneous Evn-resistant mutants of Halobacterium halobium contained mutations in hairpins 89 and 91 of 23S rRNA. In the ribosome tertiary structure, rRNA residues involved in interaction with the drug form a tight cluster that delineates the drug-binding site. Resistance mutations in the bacterial ribosomal protein L16, which is shown to be homologous to archaeal protein L10e, cluster to the same region as the rRNA mutations. The Evn-binding site overlaps with the binding site of initiation factor 2. Evn inhibits activity of initiation factor 2 in vitro, suggesting that the drug interferes with formation of the 70S initiation complex. The site of Evn binding and its mode of action are distinct from other ribosome-targeted antibiotics. This antibiotic target site can potentially be used for the development of new antibacterial drugs.