69 resultados para “all-fish” growth hormone gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of mitogenic basic fibroblast growth factor (bFGF) in the central nervous system is inhibited by direct cell contact and is implicated in reactive and neoplastic transformation of astrocytes. The molecular mechanisms controlling expression of bFGF were examined in cultures of human astrocytes. Cell-density-dependent depletion of bFGF mRNA levels parallels changes in bFGF gene protein. Regulation of transcription of a bFGF luciferase reporter gene containing an upstream region (bp -1800 to +314) of the bFGF gene promoter mimicks the density-dependent regulation of the endogenous bFGF gene in transfected astrocytes. Deletion analysis has identified a fragment (bp -650 to -513) and sequences further downstream (bp -274 to +314) as the regions required for the regulation of bFGF gene activity by cell density. Unlike in astrocytes, changing the cell density of glioma cell cultures does not affect the levels of bFGF protein and mRNA. bFGF luciferase constructs were expressed at the same level in high- or low-density cultures of glioma cells, indicating altered regulation of the bFGF gene promoter. Electrophoretic mobility shift assays showed binding of nuclear proteins to a fragment of bFGF gene promoter from bp -650 to -453. This binding was abolished by a deletion of the upstream cell-density-responsive region (bp -650 to -512). Binding was observed with nuclear extracts from subconfluent astrocytes but was reduced in extracts from confluent astrocytes. Our results indicate that induction of bFGF in astrocytes upon reduction of cell density is mediated transcriptionally by positive trans-acting factors interacting with bFGF promoter. In contrast, nuclear proteins from glioma cells bind to the promoter region from bp -650 to -453 independent of cell density. Thus, the constitutive binding of trans-acting factor(s) to the region of the bFGF promoter from bp -650 to -453 may be responsible for the continuous expression of bFGF that leads to the uncontrolled growth of glioma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Another class of growth hormone (GH) secretagogues has been discovered by altering the backbone structure of a flexible linear GH-releasing peptide (GHRP). In vitro and in vivo characterization confirms these GH secretagogues as the most potent and smallest (M(r) < 500) reported. Anabolic efficacy is demonstrated in rodents with intermittent delivery. A convergent model of the bioactive conformation of GHRPs is developed and is supported by the NMR structure of a highly potent cyclic analog of GHRP-2. The model and functional data provide a logical framework for the further design of low-molecular weight secretagogues and illustrate the utility of an interdisciplinary approach to elucidating potential bound-state conformations of flexible peptide ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Augmentation of vertebrate growth by growth hormone (GH) is primarily due to its regulation of insulin-like growth factor I (IGF I) and IGF II levels. To characterize the effect of GH on the levels of IGF I and IGF II mRNA in a teleost, 10 micrograms of bovine GH (bGH) per g of body weight was administered to juvenile rainbow trout (Oncorhynchus mykiss) through i.p. injection. The levels of IGF I and IGF II mRNA were determined simultaneously, by using RNase protection assays, in the liver, pyloric ceca, kidney, and gill at 0, 1, 3, 6, 12, 24, 48, and 72 hr after injection. In the liver, IGF I mRNA levels were significantly elevated at 6 and 12 hr (approximately 2- to 3-fold, P < or = 0.01), while IGF II mRNA levels were significantly elevated at 3 and 6 hr (approximately 3-fold, P < or = 0.01). In the pyloric ceca, IGF II mRNA levels were significantly elevated at 12, 24, and 48 hr (approximately 3-fold, P < or = 0.01), while IGF I mRNA was below the limits of assay accuracy. GH-dependent IGF mRNA appearance was not detected in the gill and kidney. Serum bGH levels, determined by using a radioimmunoassay, were significantly elevated at 3 and 6 hr (P < 0.005). In primary hepatocyte culture, IGF I and IGF II mRNA levels increased in a bGH dose-dependent fashion, with ED50 values of approximately 45 and approximately 6 ng of bGH per ml, respectively. The GH-dependent appearance of IGF II mRNA in the liver and pyloric ceca suggests important roles for this peptide hormone exclusive of IGF I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potent, orally active growth hormone (GH) secretagogue L-163,191 belonging to a recently synthesized structural class has been characterized. L-163,191 releases GH from rat pituitary cells in culture with EC50 = 1.3 +/- 0.09 nM and is mechanistically indistinguishable from the GH-releasing peptide GHRP-6 and the prototypical nonpeptide GH secretagogue L-692,429 but clearly distinguishable from the natural GH secretagogue, GH-releasing hormone. L-163,191 elevates GH in dogs after oral doses as low as 0.125 mg/kg and was shown to be specific in its release of GH without significant effect on plasma levels of aldosterone, luteinizing hormone, thyroxine, and prolactin after oral administration of 1 mg/kg. Only modest increases in cortisol were observed. Based on these properties, L-163,191 has been selected for clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signal transducer and activator of transcription, STAT5b, has been implicated in signal transduction pathways for a number of cytokines and growth factors, including growth hormone (GH). Pulsatile but not continuous GH exposure activates liver STAT5b by tyrosine phosphorylation, leading to dimerization, nuclear translocation, and transcriptional activation of the STAT, which is proposed to play a key role in regulating the sexual dimorphism of liver gene expression induced by pulsatile plasma GH. We have evaluated the importance of STAT5b for the physiological effects of GH pulses using a mouse gene knockout model. STAT5b gene disruption led to a major loss of multiple, sexually differentiated responses associated with the sexually dimorphic pattern of pituitary GH secretion. Male-characteristic body growth rates and male-specific liver gene expression were decreased to wild-type female levels in STAT5b−/− males, while female-predominant liver gene products were increased to a level intermediate between wild-type male and female levels. Although these responses are similar to those observed in GH-deficient Little mice, STAT5b−/− mice are not GH-deficient, suggesting that they may be GH pulse-resistant. Indeed, the dwarfism, elevated plasma GH, low plasma insulin-like growth factor I, and development of obesity seen in STAT5b−/− mice are all characteristics of Laron-type dwarfism, a human GH-resistance disease generally associated with a defective GH receptor. The requirement of STAT5b to maintain sexual dimorphism of body growth rates and liver gene expression suggests that STAT5b may be the major, if not the sole, STAT protein that mediates the sexually dimorphic effects of GH pulses in liver and perhaps other target tissues. STAT5b thus has unique physiological functions for which, surprisingly, the highly homologous STAT5a is unable to substitute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish serum contains several specific binding proteins for insulin-like growth factors (IGFBPs). The structure and physiological function of these fish IGFBPs are unknown. Here we report the complete primary sequence of a zebrafish IGFBP deduced from cDNA clones isolated by library screening and rapid amplification of cDNA ends. The full-length 1,757-bp cDNA encodes a protein of 276 aa, which contains a putative 22-residue signal peptide and a 254-residue mature protein. The mature zebrafish IGFBP has a predicted molecular size of 28,440 Da and shows high sequence identity with human IGFBP-2 (52%). The sequence identities with other human IGFBPs are <37%. Chinese hamster ovary cells stably transfected with the zebrafish IGFBP-2 cDNA secreted a 31-kDa protein, which bound to IGF-I and IGF-II with high affinity, but did not bind to Des(1–3)IGF-I or insulin. Northern blot analyses revealed that the zebrafish IGFBP-2 transcript is a 1.8-kb band expressed in many embryonic and adult tissues. In adult zebrafish, IGFBP-2 mRNA levels were greatly reduced by growth hormone treatment but increased by prolonged fasting. When overexpressed or added to cultured zebrafish and mammalian cells, the zebrafish IGFBP-2 significantly inhibited IGF-I-stimulated cell proliferation and DNA synthesis. These results indicate that zebrafish IGFBP-2 is a negative growth regulator acting downstream in the growth hormone-IGF-I axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviral elements are found in abundance throughout the human genome but only rarely have alterations of endogenous genes by retroviral insertions been described. Herein we report that a human endogenous retrovirus (HERV) type C is inserted in the human growth factor gene pleiotrophin (PTN) between the 5′ untranslated and the coding region. This insert in the human genome expands the region relative to the murine gene. Studies with promoter-reporter constructs show that the HERV insert in the human PTN gene generates an additional promoter with trophoblast-specific activity. Due to this promoter function, fusion transcripts between HERV and the open reading frame of PTN (HERV-PTN) were detected in all normal human trophoblast cell cultures as early as 9 weeks after gestation (n = 7) and in all term placenta tissues (n = 5) but not in other normal adult tissues. Furthermore, only trophoblast-derived choriocarcinoma cell lines expressed HERV-PTN mRNA whereas tumor cell lines derived from the embryoblast (teratocarcinoma) or from other lineages failed to do so. We investigated the significance of HERV-PTN mRNA in a choriocarcinoma model by targeting this transcript with ribozymes and found that the depletion of HERV-PTN mRNA prevents human choriocarcinoma growth, invasion, and angiogenesis in mice. This suggests that the tissue-specific expression of PTN due to the HERV insertion in the human genome supports the highly aggressive growth of human choriocarcinoma and possibly of the human trophoblast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracts of Ginkgo biloba leaves are consumed as dietary supplements to counteract chronic, age-related neurological disorders. We have applied high-density oligonucleotide microarrays to define the transcriptional effects in the cortex and hippocampus of mice whose diets were supplemented with the herbal extract. Gene expression analysis focused on the mRNAs that showed a more than 3-fold change in their expression. In the cortex, mRNAs for neuronal tyrosine/threonine phosphatase 1, and microtubule-associated τ were significantly enhanced. Hyperphosphorylated τ is the major constituent of the neurofibrillary tangles in the brains of Alzheimer's disease patients. The expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-2, calcium and chloride channels, prolactin, and growth hormone (GH), all of which are associated with brain function, were also up-regulated. In the hippocampus, only transthyretin mRNA was upregulated. Transthyretin plays a role in hormone transport in the brain and possibly a neuroprotective role by amyloid-β sequestration. This study reveals that diets supplemented with Ginkgo biloba extract have notable neuromodulatory effects in vivo and illustrates the utility of genome-wide expression monitoring to investigate the biological actions of complex extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the cytokine/growth hormone/prolactin (PRL) receptor superfamily are associated with cytoplasmic tyrosine kinases of the Jak family. For the PRL receptor (PRLR), after PRL stimulation, both the kinase Jak2 and the receptor undergo tyrosine phosphorylation. To assess the role of tyrosine phosphorylation of the PRLR in signal transduction, several mutant forms of the PRLR in which various tyrosine residues were changed to phenylalanine were constructed and their functional properties were investigated. We identified a single tyrosine residue located at the C terminus of the PRLR to be necessary for in vivo activation of PRL-responsive gene transcription. This clearly indicates that a phosphotyrosine residue in the cytoplasmic domain of a member of the cytokine/growth hormone/PRL receptor superfamily is directly involved in signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant growth hormone indole-3-acetic acid (IAA) transcriptionally activates expression of several genes in plants. We have previously identified a 164-bp promoter region (-318 to -154) in the PS-IAA4/5 gene that confers IAA inducibility. Linker-scanning mutagenesis across the region has identified two positive domains: domain A (48 bp; -203 to -156) and domain B (44 bp; -299 to -256), responsible for transcriptional activation of PS-IAA4/5 by IAA. Domain A contains the highly conserved sequence 5'-TGTCCCAT-3' found among various IAA-inducible genes and behaves as the major auxin-responsive element. Domain B functions as an enhancer element which may also contain a less efficient auxin-responsive element. The two domains act cooperatively to stimulate transcription; however, tetramerization of domain A or B compensates for the loss of A or B function. The two domains can also mediate IAA-induced transcription from the heterologous cauliflower mosaic virus 35S promoter (-73 to +1). In vivo competition experiments with icosamers of domain A or B show that the domains interact specifically and with different affinities to low abundance, positive transcription factor(s). A model for transcriptional activation of PS-IAA4/5 by IAA is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor.