323 resultados para K ras protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The [4Fe-4S] cluster of Azotobacter vinelandii ferredoxin I receives three of its four ligands from a Cys-Xaa-Xaa-Cys-Xaa-Xaa-Cys sequence at positions 39-45 while the fourth ligand, Cys20, is provided by a distal portion of the sequence. Previously we reported that the site-directed mutation of Cys20 to Ala (C20A protein) resulted in the formation of a new [4Fe-4S] cluster that obtained its fourth ligand from Cys24, a free cysteine in the native structure. That ligand exchange required significant protein rearrangement. Here we report the conversion of Cys20 to Ser (C20S protein), which gives the protein the opportunity either to retain the native structure and use the Ser20 O gamma as a ligand or to rearrange and use Cys24. X-ray crystallography demonstrates that the cluster does not use the Ser20 O gamma as a ligand; rather it rearranges to use Cys24. In the C20S protein the [4Fe-4S] cluster has altered stability and redox properties relative to either C20A or the native protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Philadelphia chromosome-positive leukemias result from the fusion of the BCR and ABL genes, which generates a functional chimeric molecule. The Abr protein is very similar to Bcr but lacks a structural domain which may influence its biological regulatory capabilities. Both Abr and Bcr have a GTPase-activating protein (GAP) domain similar to those found in other proteins that stimulate GTP hydrolysis by members of the Rho family of GTP-binding proteins, as well as a region of homology with the guanine nucleotide dissociation-stimulating domain of the DBL oncogene product. We purified as recombinant fusion proteins the GAP- and Dbl-homology domains of both Abr and Bcr. The Dbl-homology domains of Bcr and Abr were active in stimulating GTP binding to CDC42Hs, RhoA, Rac1, and Rac2 (rank order, CDC42Hs > RhoA > Rac1 = Rac2) but were inactive toward Rap1A and Ha-Ras. Both Bcr and Abr acted as GAPs for Rac1, Rac2, and CDC42Hs but were inactive toward RhoA, Rap1A, and Ha-Ras. Each individual domain bound in a noncompetitive manner to GTP-binding protein substrates. These data suggest the multifunctional Bcr and Abr proteins might interact simultaneously and/or sequentially with members of the Rho family to regulate and coordinate cellular signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

VIP21/caveolin is localized to both caveolae and apical transport vesicles and presumably cycles between the cell surface and the Golgi complex. We have studied the lipid interactions of this protein by reconstituting Escherichia coli-expressed VIP21/caveolin into liposomes. Surprisingly, the protein reconstituted only with cholesterol-containing lipid mixtures. We demonstrated that the protein binds at least 1 mol of cholesterol per mole of protein and that this binding promotes formation of protein oligomers. These findings suggest that VIP21/caveolin, through its cholesterol-binding properties, serves a specific function in microdomain formation during membrane trafficking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a model of gamma-aminobutyric acid (GABA)ergic synaptic transmission mediated by GABAA and GABAB receptors, including cooperativity in the guanine nucleotide binding protein (G protein) cascade mediating the activation of K+ channels by GABAB receptors. If the binding of several G proteins is needed to activate the K+ channels, then only a prolonged activation of GABAB receptors evoked detectable currents. This could occur if strong stimuli evoked release in adjacent terminals and the spillover resulted in prolonged activation of the receptors, leading to inhibitory responses similar to those observed in hippocampal slices. The same model also reproduced thalamic GABAB responses to high-frequency bursts of stimuli. In this case, prolonged activation of the receptors was due to high-frequency release conditions. This model provides insights into the function of GABAB receptors in normal and epileptic discharges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously identified a testicular phosphoprotein that binds to highly conserved sequences (Y and H elements) in the 3' untranslated regions (UTRs) of testicular mRNAs and suppresses in vitro translation of mRNA constructs that contain these sequences. This protein, testis/brain RNA-binding protein (TB-RBP) also is abundant in brain and binds to brain mRNAs whose 3' UTRs contain similar sequences. Here we show that TB-RBP binds specific mRNAs to microtubules (MTs) in vitro. When TB-RBP is added to MTs reassembled from either crude brain extracts or from purified tubulin, most of the TB-RBP binds to MTs. The association of TB-RBP with MTs requires the assembly of MTs and is diminished by colcemid, cytochalasin D, and high levels of salt. Transcripts from the 3' UTRs of three mRNAs that contain the conserved sequence elements (transcripts for protamine 2, tau protein, and myelin basic protein) are linked by TB-RBP to MTs, whereas transcripts that lack the conserved sequences do not bind TB-RBP. We conclude that TB-RBP serves as an attachment protein for the MT association of specific mRNAs. Considering its ability to arrest translation in vitro, we propose that TB-RBP functions in the storage and transportation of mRNAs to specific intracellular sites where they are translated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injection of min K mRNA into Xenopus oocytes results in expression of slowly activating voltage-dependent potassium channels, distinct from those induced by expression of other cloned potassium channels. The min K protein also differs in structure, containing only a single predicted transmembrane domain. While it has been demonstrated that all other cloned potassium channels form by association of four independent subunits, the number of min K monomers which constitute a functional channel is unknown. In rat min K, replacement of Ser-69 by Ala (S69A) causes a shift in the current-voltage (I-V) relationship to more depolarized potentials; currents are not observed at potentials negative to 0 mV. To determine the subunit stoichiometry of min K channels, wild-type and S69A subunits were coexpressed. Injections of a constant amount of wild-type mRNA with increasing amounts of S69A mRNA led to potassium currents of decreasing amplitude upon voltage commands to -20 mV. Applying a binomial distribution to the reduction of current amplitudes as a function of the different coinjection mixtures yielded a subunit stoichiometry of at least 14 monomers for each functional min K channel. A model is presented for how min K subunits may form a channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase C (PKC) is involved in the proliferation and differentiation of many cell types. In human erythroleukemia (K-562) cells, the PKC isoforms alpha and beta II play distinct functional roles. alpha PKC is involved in phorbol 12-myristate 13-acetate-induced cytostasis and megakaryocytic differentiation, whereas beta II PKC is required for proliferation. To identify regions within alpha and beta II PKC that allow participation in these divergent pathways, we constructed chimeras in which the regulatory and catalytic domains of alpha and beta II PKC were exchanged. These PKC chimeras can be stably expressed, exhibit enzymatic properties similar to native alpha and beta II PKC in vitro, and participate in alpha and beta II PKC isotype-specific pathways in K-562 cells. Expression of the beta/alpha PKC chimera induces cytostasis in the same manner as overexpression of wild-type alpha PKC. In contrast, the alpha/beta II PKC chimera, like wild-type beta II PKC, selectively translocates to the nucleus and leads to increased phosphorylation of the nuclear envelope polypeptide lamin B in response to bryostatin-1. Therefore, the catalytic domains of alpha and beta II PKC contain determinants important for alpha and beta II PKC isotype function. These results suggest that the catalytic domain represents a potential target for modulating PKC isotype activity in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic cellulose degradation is a heterogeneous reaction requiring binding of soluble cellulase molecules to the solid substrate. Based on our studies of the cellulase complex of Clostridium thermocellum (the cellulosome), we have previously proposed that such binding can be brought about by a special "anchorage subunit." In this "anchor-enzyme" model, CipA (a major subunit of the cellulosome) enhances the activity of CelS (the most abundant catalytic subunit of the cellulosome) by anchoring it to the cellulose surface. We have subsequently reported that CelS contains a conserved duplicated sequence at its C terminus and that CipA contains nine repeated sequences with a cellulose binding domain (CBD) in between the second and third repeats. In this work, we reexamined the anchor-enzyme mechanism by using recombinant CelS (rCelS) and various CipA domains, CBD, R3 (the repeat next to CBD), and CBD/R3, expressed in Escherichia coli. As analyzed by non-denaturing gel electrophoresis, rCelS, through its conserved duplicated sequence, formed a stable complex with R3 or CBD/R3 but not with CBD. Although R3 or CBD alone did not affect the binding of rCelS to cellulose, such binding was dependent on CBD/R3, indicating the anchorage role of CBD/R3. Such anchorage apparently increased the rCelS activity toward crystalline cellulose. These results substantiate the proposed anchor-enzyme model and the expected roles of individual CipA domains and the conserved duplicated sequence of CelS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cAMP-dependent protein kinase (PKA) has been shown to play an important role in long-term potentiation (LTP) in the hippocampus, but little is known about the function of PKA in long-term depression (LTD). We have combined pharmacologic and genetic approaches to demonstrate that PKA activity is required for both homosynaptic LTD and depotentiation and that a specific neuronal isoform of type I regulatory subunit (RI beta) is essential. Mice carrying a null mutation in the gene encoding RI beta were established by use of gene targeting in embryonic stem cells. Hippocampal slices from mutant mice show a severe deficit in LTD and depotentiation at the Schaffer collateral-CA1 synapse. This defect is also evident at the lateral perforant path-dentate granule cell synapse in RI beta mutant mice. Despite a compensatory increase in the related RI alpha protein and a lack of detectable changes in total PKA activity, the hippocampal function in these mice is not rescued, suggesting a unique role for RI beta. Since the late phase of CA1 LTP also requires PKA but is normal in RI beta mutant mice, our data further suggest that different forms of synaptic plasticity are likely to employ different combinations of regulatory and catalytic subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell receptors (TCRs) recognize peptide bound within the relatively conserved structural framework of major histocompatibility complex (MHC) class I or class II molecules but can discriminate between closely related MHC molecules. The structural basis for the specificity of ternary complex formation by the TCR and MHC/peptide complexes was examined for myelin basic protein (MBP)-specific T-cell clones restricted by different DR2 subtypes. Conserved features of this system allowed a model for positioning of the TCR on DR2/peptide complexes to be developed: (i) The DR2 subtypes that presented the immunodominant MBP peptide differed only at a few polymorphic positions of the DR beta chain. (ii) TCR recognition of a polymorphic residue on the helical portion of the DR beta chain (position DR beta 67) was important in determining the MHC restriction. (iii) The TCR variable region (V) alpha 3.1 gene segment was used by all of the T-cell clones. TCR V beta usage was more diverse but correlated with the MHC restriction--i.e., with the polymorphic DR beta chains. (iv) Two clones with conserved TCR alpha chains but different TCR beta chains had a different MHC restriction but a similar peptide specificity. The difference in MHC restriction between these T-cell clones appeared due to recognition of a cluster of polymorphic DR beta-chain residues (DR beta 67-71). MBP-(85-99)-specific TCRs therefore appeared to be positioned on the DR2/peptide complex such that the TCR beta chain contacted the polymorphic DR beta-chain helix while the conserved TCR alpha chain contacted the nonpolymorphic DR alpha chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein (apo-) B mRNA editing is the deamination of cytidine that creates a new termination codon and produces a truncated version of apo-B (apo-B48). The cytidine deaminase catalytic subunit [apo-B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1)] of the multiprotein editing complex has been identified. We generated transgenic rabbits and mice expressing rabbit APOBEC-1 in their livers to determine whether hepatic expression would lower low density lipoprotein cholesterol concentrations. The apo-B mRNA from the livers of the transgenic mice and rabbit was extensively edited, and the transgenic animals had reduced concentrations of apo-B100 and low density lipoproteins compared with control animals. Unexpectedly, all of the transgenic mice and a transgenic rabbit had liver dysplasia, and many transgenic mice developed hepatocellular carcinomas. Many of the mouse livers were hyperplastic and filled with lipid. Other hepatic mRNAs with sequence motifs similar to apo-B mRNA were examined for this type of editing (i.e., cytidine deamination). One of these, tyrosine kinase, was edited in livers of transgenic mice but not of controls. This result demonstrates that other mRNAs can be edited by the overexpressed editing enzyme and suggests that aberrant editing of hepatic mRNAs involved in cell growth and regulation is the cause of the tumorigenesis. Finally, these findings compromise the potential use of APOBEC-1 for gene therapy to lower plasma levels of low density lipoproteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The positive effects of Myc on cellular growth and gene expression are antagonized by activities of another member of the Myc superfamily, Mad. Characterization of the mouse homolog of human mad on the structural level revealed that domains shown previously to be required in the human protein for anti-Myc repression, sequence-specific DNA-binding activity, and dimerization with its partner Max are highly conserved. Conservation is also evident on the biological level in that both human and mouse mad can antagonize the ability of c-myc to cooperate with ras in the malignant transformation of cultured cells. An analysis of c-myc and mad gene expression in the developing mouse showed contrasting patterns with respect to tissue distribution and developmental stage. Regional differences in expression were more striking on the cellular level, particularly in the mouse and human gastrointestinal system, wherein c-Myc protein was readily detected in immature proliferating cells at the base of the colonic crypts, while Mad protein distribution was restricted to the postmitotic differentiated cells in the apex of the crypts. An increasing gradient of Mad was also evident in the more differentiated subcorneal layers of the stratified squamous epithelium of the skin. Together, these observations support the view that both downregulation of Myc and accumulation of Mad may be necessary for progression of precursor cells to a growth-arrested, terminally differentiated state.