306 resultados para 61 kDa protein
Resumo:
Expression of the 70-kDa polypeptide of human Ku autoantigen in rat cells is shown to suppress specifically the induction of hsp70 upon heat shock. Thermal induction of other heat shock proteins is not significantly affected, nor is the state of phosphorylation or the DNA-binding ability of the heat shock transcription factor HSF1. These findings support a model in which hsp70 gene expression is controlled by a second regulatory factor in addition to the positive activator HSF1. The Ku autoantigen, or a protein closely related to it, is likely to be involved in the regulation of hsp70 expression.
Resumo:
The 39-kDa receptor-associated protein (RAP) associates with the multifunctional low density lipoprotein (LDL) receptor-related protein (LRP) and thereby prevents the binding of all known ligands, including alpha 2-macroglobulin and chylomicron remnants. RAP is predominantly localized in the endoplasmic reticulum, raising the possibility that it functions as a chaperone or escort protein in the biosynthesis or intracellular transport of LRP. Here we have used gene targeting to show that RAP promotes the expression of functional LRP in vivo. The amount of mature, processed LRP is reduced in liver and brain of RAP-deficient mice. As a result, hepatic clearance of alpha 2-macroglobulin is impaired and remnant lipoproteins accumulate in the plasma of RAP-deficient mice that also lack functional LDL receptors. These results are consistent with the hypothesis that RAP stabilizes LRP within the secretory pathway. They also suggest a further mechanism by which the activity of an endocytic receptor may be modulated in vivo.
Resumo:
The mechanisms involved in the integration of proteins into the thylakoid membrane are largely unknown. However, many of the steps of this process for the light-harvesting chlorophyll a/b protein (LHCP) have been described and reconstituted in vitro. LHCP is synthesized as a precursor in the cytosol and posttranslationally imported into chloroplasts. Upon translocation across the envelope membranes, the N-terminal transit peptide is cleaved, and the apoprotein is assembled into a soluble "transit complex" and then integrated into the thylakoid membrane via three transmembrane helices. Here we show that 54CP, a chloroplast homologue of the 54-kDa subunit of the mammalian signal recognition particle (SRP54), is essential for transit complex formation, is present in the complex, and is required for LHCP integration into the thylakoid membrane. Our data indicate that 54CP functions posttranslationally as a molecular chaperone and potentially pilots LHCP to the thylakoids. These results demonstrate that one of several pathways for protein routing to the thylakoids is homologous to the SRP pathway and point to a common evolutionary origin for the protein transport systems of the endoplasmic reticulum and the thylakoid membrane.
Resumo:
Macrophage-stimulating protein (MSP) was originally identified as an inducer of murine resident peritoneal macrophage responsiveness to chemoattractants. We recently showed that the product of RON, a protein tyrosine kinase cloned from a human keratinocyte library, is the receptor for MSP. Similarity of murine stk to RON led us to determine if the stk gene product is the murine receptor for MSP. Radiolabeled MSP could bind to NIH 3T3 cells transfected with murine stk cDNA (3T3/stk). Binding was saturable and was inhibited by unlabeled MSP but not by structurally related proteins, including hepatocyte growth factor and plasminogen. Specific binding to STK was demonstrated by cross-linking of 125I-labeled MSP to membrane proteins of 3T3/stk cells, which resulted in a protein complex with a molecular mass of 220 kDa. This radiolabeled complex comprised 125I-MSP and STK, since it could be immunoprecipitated by antibodies to the STK beta chain. Binding of MSP to stk cDNA-transfected cells induced tyrosine phosphorylation of the 150-kDa STK beta chain within 1 min and caused increased motile activity. These results establish the murine stk gene product as a specific transmembrane protein tyrosine kinase receptor for MSP. Inasmuch as the stk cDNA was cloned from a hematopoietic stem cell, our data suggest that in addition to macrophages and keratinocytes, a cell in the hematopoietic lineage may also be a target for MSP.
Resumo:
The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.
Resumo:
A cyclophilin (CyP) purified to homogeneity from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 had a molecular mass of 20.5 kDa and a pI of 8.1. The protein catalyzed the isomerization of the prolyl peptide bond of N-succinyl-Ala-Ala-(cis,trans)-Pro-Phe p-nitroanilide with a kcat/Km value of 9.3 x 10(6) M-1.s-1 at 10 degrees C and pH 7.8. Cyclosporin A strongly inhibited this peptidylprolyl cis-trans isomerase activity with an IC50 of 19.6 nM. The sequence of the first 30 N-terminal amino acids of this CyP had high homology with the N-terminal sequences of other eukaryotic CyPs. By use of a DNA hybridization probe amplified by PCR with degenerate oligonucleotide primers designed based on the amino acid sequences of the N terminus of this CyP and highly conserved internal regions of other CyPs, a full-length cDNA clone was isolated. It possessed an open reading frame encoding a polypeptide of 203 amino acids with a calculated molecular weight of 21,969, containing a putative hydrophobic signal peptide sequence of 22 amino acids preceding the N terminus of the mature enzyme and a C-terminal sequence, Lys-Ala-Glu-Leu, characteristic of an endoplasmic reticulum retention signal. The Orpinomyces PC-2 CyP is a typical type B CyP. The amino acid sequence of the Orpinomyces CyP exhibits striking degrees of identity with the corresponding human (70%), bovine (69%), mouse (68%), chicken (66%), maize (61%), and yeast (54%) proteins. Phylogenetic analysis based on the CyP sequences indicated that the evolutionary origin of the Orpinomyces CyP was closely related with CyPs of animals.