298 resultados para MAMMALIAN-CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammals continually confront microbes at mucosal surfaces. A current model suggests that epithelial cells contribute to defense at these sites, in part through the production of broad-spectrum antibiotic peptides. Previous studies have shown that invertebrates can mount a host defense response characterized by the induction in epithelia] cells of a variety of antibiotic proteins and peptides when they are challenged with microorganisms, bacterial cell wall/membrane components, or traumatic injury [Boman, H.G. & Hultmark, D. (1987) Annu. Rev. Microbiol. 41, 103-126J. However, factors that govern the expression of similar defense molecules in mammalian epithelial cells are poorly understood. Here, a 13-fold induction of the endogenous gene encoding tracheal antimicrobial peptide was found to characterize a host response of tracheal epithelia] cells (TECs) exposed to bacterial lipopolysaccharide (LPS). Northern blot data indicated that TECs express CD14, a well-characterized LPS-binding protein known to mediate many LPS responses. A monoclonal antibody to CD14 blocked the observed tracheal antimicrobial peptide induction by LPS under serum-free conditions. Together the data support that CD14 of epithelial cell origin mediates the LPS induction of an antibiotic peptide gene in TECs, providing evidence for the active participation of epithelial cells in the host's local defense response to bacteria. Furthermore, the data allude to a conservation of this host response in evolution and suggest that a similar inducible pathway of host defense is prevalent at mucosal surfaces of mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) is a ubiquitous protein that can reduce methionine sulfoxide residues in proteins as well as in a large number of methyl sulfoxide compounds. The expression of MsrA in various rat tissues was determined by using immunocytochemical staining. Although the protein was found in all tissues examined, it was specifically localized to renal medulla and retinal pigmented epithelial cells, and it was prominent in neurons and throughout the nervous system. In addition, blood and alveolar macrophages showed high expression of the enzyme. The msrA gene was mapped to the central region of mouse chromosome 14, in a region of homology with human chromosomes 13 and 8p21.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In tissues of higher organisms homopolymers of alpha2,8-linked N-acetylneuraminic acid can be found as a posttranslational modification on selected proteins. We report here the discovery of homopolymers of alpha2,8-linked deaminoneuraminic acid [poly(alpha2,8-KDN)] in various tissues derived from all three germ layers in vertebrates including mammals. The monoclonal antibody kdn8kdn in conjunction with a bacterial KDNase permitted the detection of poly(alpha2,8-KDN) by immunohistochemistry and immunoblotting. Further evidence for the existence of poly(alpha2,8-KDN) was obtained by gas/liquid chromatography. The poly(alpha2,8-KDN) glycan was detectable in all tissues studied with the exception of mucus-producing cells present in various organs, the extracellular matrix, and basement membranes. However, in certain organs such as muscle, kidney, lung, and brain its expression was developmentally regulated. Despite its widespread tissue distribution, the poly(alpha2,8-KDN) glycan was detected on a single 150-kDa glycoprotein except for a single >350-kDa glycoprotein in kidney, which makes it most distinctive among polysialic acids. The ubiquitous yet selective expression may be indicative of a general function of the poly(alpha2,8-KDN)-bearing glycoproteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many features in the mammalian sensory thalamus, such as the types of neurons, their connections, or their neurotransmitters, are conserved in evolution. We found a wide range in the proportion of gamma-aminobutyric acidergic (GABAergic) neurons in the medial geniculate body, from <1% (bat and rat) to 25% or more (cat and monkey). In the bat, some medial geniculate body subdivisions have no GABAergic cells. Species-specific variation also occurs in the somesthetic ventrobasal complex. In contrast, the lateral geniculate body of the visual system has about the same proportion of GABAergic cells in many species. In the central auditory pathway, only the medial geniculate body shows this arrangement; the relative number of GABAergic cells in the inferior colliculus and auditory cortex is similar in each species. The range in the proportion of GABAergic neurons suggests that there are comparative differences in the neural circuitry for thalamic inhibition. We conclude that the number of GABAergic neurons in thalamic sensory nuclei may have evolved independently or divergently in phylogeny. Perhaps these adaptations reflect neurobehavioral requirements for more complex, less stereotyped processing, as in speech-like communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deflection of the mechanically sensitive hair bundle atop a hair cell opens transduction channels, some of which subsequently reclose during a Ca2+-dependent adaptation process. Myosin I in the hair bundle is thought to mediate this adaptation; in the bullfrog's hair cell, the relevant isozyme may be the 119-kDa amphibian myosin I beta. Because this molecule resembles other forms of myosin I, we hypothesized that calmodulin, a cytoplasmic receptor for Ca2+, regulates the ATPase activity of myosin. We identified an approximately 120-kDa calmodulin-binding protein that shares with hair-bundle myosin I the properties of being photolabeled by vanadate-trapped uridine nucleotides and immunoreactive with a monoclonal antibody raised against mammalian myosin I beta. To investigate the possibility that calmodulin mediates Ca2+-dependent adaptation, we inhibited calmodulin action and measured the results with two distinct assays. Calmodulin antagonists increased photolabeling of hair-bundle myosin I by nucleotides. In addition, when introduced into hair cells through recording electrodes, calmodulin antagonists abolished adaptation to sustained mechanical stimuli. Our evidence indicates that calmodulin binds to and controls the activity of hair-bundle myosin I, the putative adaptation motor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the isolation and characterization of a new selenoprotein from a human lung adenocarcinoma cell line, NCI-H441. Cells were grown in RPMI-1640 medium containing 10% (vol/vol) fetal bovine serum and 0.1 microM [75Se]selenite. A 75Se-labeled protein was isolated from sonic extracts of the cells by chromatography on DE-23, phenyl-Sepharose, heparin-agarose, and butyl-Sepharose. The protein, a homodimer of 57-kDa subunits, was shown to contain selenium in the form of selenocysteine; hydrolysis of the protein alkylated with either iodoacetate or 3-bromopropionate yielded Se-carboxymethyl-selenocysteine or Se-carboxyethyl-selenocysteine, respectively. The selenoprotein showed two isoelectric points at pH 5.2 and pH 5.3. It was distinguished from selenoprotein P by N-glycosidase assay and by the periodate-dansylhydrazine test, which indicated no detectable amounts of glycosyl groups on the protein. The selenoprotein contains FAD as a prosthetic group and catalyzes NADPH-dependent reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and reduction of insulin in the presence of thioredoxin (Trx). The specific activity was determined to be 31 units/mg by DTNB assay. Apparent Km values for DTNB, Escherichia coli Trx, and rat Trx were 116, 34, and 3.7 microM, respectively. DTNB reduction was inhibited by 0.2 mM arsenite. Although the subunit composition and catalytic properties are similar to those of mammalian thioredoxin reductase (TR), the human lung selenoprotein failed to react with anti-rat liver TR polyclonal antibody in immunoblot assays. The selenocysteine-containing TR from the adenocarcinoma cells may be a variant form distinct from rat liver TR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomerase, a ribonucleic acid-protein complex, adds hexameric repeats of 5'-TTAGGG-3' to the ends of mammalian chromosomal DNA (telomeres) to compensate for the progressive loss that occurs with successive rounds of DNA replication. Although somatic cells do not express telomerase, germ cells and immortalized cells, including neoplastic cells, express this activity. To determine whether the phenotypic differentiation of immortalized cells is linked to the regulation of telomerase activity, terminal differentiation was induced in leukemic cell lines by diverse agents. A pronounced downregulation of telomerase activity was produced as a consequence of the differentiated status. The differentiation-inducing agents did not directly inhibit telomerase activity, suggesting that the inhibition of telomerase activity is in response to induction of differentiation. The loss of telomerase activity was not due to the production of an inhibitor, since extracts from differentiated cells did not cause inhibition of telomerase activity. By using additional cell lineages including epithelial and embryonal stem cells, down-regulation of telomerase activity was found to be a general response to the induction of differentiation. These findings provide the first direct link between telomerase activity and terminal differentiation and may provide a model to study regulation of telomerase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell differentiation, tissue formation, and organogenesis are fundamental patterns during the development of multicellular animals from the dividing cells of fertilized eggs. Hence, the complete morphogenesis of any developing organism of the animal kingdom is based on a complex series of interactions that is always associated with the development of a blastula, a one-layered hollow sphere. Here we document an alternative pathway of differentiation, organogenesis, and morphogenesis occurring in an adult protochordate colonial organism. In this system, any minute fragment of peripheral blood vessel containing a limited number of blood cells isolated from Botrylloides, a colonial sea squirt, has the potential to give rise to a fully functional organism possessing all three embryonic layers. Regeneration probably results from a small number of totipotent stem cells circulating in the blood system. The developmental process starts from disorganized, chaotic masses of blood cells. At first an opaque cell mass is formed. Through intensive cell divisions, a hollow, blastula-like structure results, which may produce a whole organism within a short period of a week. This regenerative power of the protochordates may be compared with some of the characteristics associated with the formation of mammalian embryonal carcinomous bodies. It may also serve as an in vivo model system for studying morphogenesis and differentiation by shedding more light on the controversy of the "stem cell" vs. the "dedifferentiation" theories of regeneration and pattern formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although only 44% identical to human karyopherin alpha 1, human karyopherin alpha 2 (Rch1 protein) substituted for human karyopherin alpha 1 (hSRP-1/NPI-1) in recognizing a standard nuclear localization sequence and karyopherin beta-dependent targeting to the nuclear envelope of digitonin-permeabilized cells. By immunofluorescence microscopy of methanol-fixed cells, karyopherin beta was localized to the cytoplasm and the nuclear envelope and was absent from the nuclear interior. Digitonin permeabilization of buffalo rat liver cells depleted their endogenous karyopherin beta. Recombinant karyopherin beta can bind directly to the nuclear envelope of digitonin-permeabilized cells at 0 degree C (docking reaction). In contrast, recombinant karyopherin alpha 1 or alpha 2 did not bind unless karyopherin beta was present. Likewise, in an import reaction (at 20 degrees C) with all recombinant transport factors (karyopherin alpha 1 or alpha 2, karyopherin beta, Ran, and p10) import depended on karyopherin beta. Localization of the exogenously added transport factors after a 30-min import reaction showed karyopherin beta at the nuclear envelope and karyopherin alpha 1 or alpha 2, Ran, and p10 in the nuclear interior. In an overlay assay with SDS/PAGE-resolved and nitrocellulose-transferred proteins of the nuclear envelope, 35S-labeled karyopherin beta bound to at least four peptide repeat-containing nucleoporins--Nup358, Nup214, Nup153, and Nup98.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify genes involved in the regulation of early mammalian development, we have developed a dominant-negative mutant basic-helix-loop-helix (bHLH) protein probe for interaction cloning and have isolated a member of the bHLH family of transcription factors, Meso1. Meso1-E2A heterodimers are capable of binding to oligonucleotide probes that contain a bHLH DNA recognition motif. In mouse embryos, Meso1 is expressed prior to MyoD1 family members. Meso1 expression is first detected at the neural plate stage of development in the paraxial mesoderm of the head and in presomitic mesodermal cells prior to their condensation into somites. Our findings suggest that Meso1 may be a key regulatory gene involved in the early events of vertebrate mesoderm differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which cells rapidly polarize in the direction of external signals are not understood. Helper T cells, when contacted by an antigen-presenting cell, polarize their cytoskeletons toward the antigen-presenting cell within minutes. Here we show that, in T cells, the mammalian Ras-related GTPase CDC42 (the homologue of yeast CDC42, a protein involved in budding polarity) can regulate the polarization of both actin and microtubules toward antigen-presenting cells but is not involved in other T-cell signaling processes such as those which culminate in interleukin 2 production. Although T-cell polarization appears dispensable for signaling leading to interleukin 2 production, polarization may direct lymphokine secretion towards the correct antigen-presenting cell in a crowded cellular environment. Inhibitor experiments suggest that phosphatidylinositol 3-kinase is required for cytoskeletal polarization but that calcineurin activity, known to be important for other aspects of signaling, is not. Apparent conservation of CDC42 function between yeast and T cells suggests that this GTPase is a general regulator of cytoskeletal polarity in many cell types.