21 resultados para within-host modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV type 1 (HIV-1) specifically uses host cell tRNALys-3 as a primer for reverse transcription. The 3′ 18 nucleotides of this tRNA are complementary to a region on the HIV RNA genome known as the primer binding site (PBS). HIV-1 has a strong preference for maintaining a lysine-specific PBS in vivo, and viral genomes with mutated PBS sequences quickly revert to be complementary to tRNALys-3. To investigate the mechanism for the observed PBS reversion events in vitro, we examined the capability of the nucleocapsid protein (NC) to anneal various tRNA primer sequences onto either complementary or noncomplementary PBSs. We show that NC can anneal different full-length tRNAs onto viral RNA transcripts derived from the HIV-1 MAL or HXB2 isolates, provided that the PBS is complementary to the tRNA used. In contrast, NC promotes specific annealing of only tRNALys-3 onto an RNA template (HXB2) whose PBS sequence has been mutated to be complementary to the 3′ 18 nt of human tRNAPro. Moreover, HIV-1 reverse transcriptase extends this binary complex from the proline-specific PBS. The formation of the noncomplementary binary complex does not occur when a chimeric tRNALys/Pro containing proline-specific D and anticodon domains is used as the primer. Thus, elements outside the acceptor-TΨC domains of tRNALys-3 play an important role in preferential primer use in vitro. Our results support the hypothesis that mutant PBS reversion is a result of tRNALys-3 annealing onto and extension from a PBS that specifies an alternate host cell tRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial pathogens have evolved many ingenious ways to infect their hosts and cause disease, including the subversion and exploitation of target host cells. One such subversive microbe is enteropathogenic Escherichia coli (EPEC). A major cause of infantile diarrhea in developing countries, EPEC poses a significant health threat to children worldwide. Central to EPEC-mediated disease is its colonization of the intestinal epithelium. After initial adherence, EPEC causes the localized effacement of microvilli and intimately attaches to the host cell surface, forming characteristic attaching and effacing (A/E) lesions. Considered the prototype for a family of A/E lesion-causing bacteria, recent in vitro studies of EPEC have revolutionized our understanding of how these pathogens infect their hosts and cause disease. Intimate attachment requires the type III-mediated secretion of bacterial proteins, several of which are translocated directly into the infected cell, including the bacteria's own receptor (Tir). Binding to this membrane-bound, pathogen-derived protein permits EPEC to intimately attach to mammalian cells. The translocated EPEC proteins also activate signaling pathways within the underlying cell, causing the reorganization of the host actin cytoskeleton and the formation of pedestal-like structures beneath the adherent bacteria. This review explores what is known about EPEC's subversion of mammalian cell functions and how this knowledge has provided novel insights into bacterial pathogenesis and microbe-host interactions. Future studies of A/E pathogens in animal models should provide further insights into how EPEC exploits not only epithelial cells but other host cells, including those of the immune system, to cause diarrheal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strains of uropathogenic Escherichia coli (UPEC) are the causative agents in the vast majority of all urinary tract infections. Upon entering the urinary tract, UPEC strains face a formidable array of host defenses, including the flow of urine and a panoply of antimicrobial factors. To gain an initial foothold within the bladder, most UPEC strains encode filamentous surface adhesive organelles called type 1 pili that can mediate bacterial attachment to, and invasion of, bladder epithelial cells. Invasion provides UPEC with a protective environment in which bacteria can either replicate or persist in a quiescent state. Infection with type 1-piliated E. coli can trigger a number of host responses, including cytokine production, inflammation, and the exfoliation of infected bladder epithelial cells. Despite numerous host defenses and even antibiotic treatments that can effectively sterilize the urine, recent studies demonstrate that uropathogens can persist within the bladder tissue. These bacteria may serve as a reservoir for recurrent infections, a common problem affecting millions each year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a region unique to the Salmonella typhimurium chromosome that is essential for virulence in mice. This region harbors at least three genes: two (spiA and spiB) encode products that are similar to proteins found in type III secretion systems, and a third (spiR) encodes a putative regulator. A strain with a mutation in spiA was unable to survive within macrophages but displayed wild-type levels of epithelial cell invasion. The culture supernatants of the spi mutants lacked a modified form of flagellin, which was present in the supernatant of the wild-type strain. This suggests that the Spi secretory apparatus exports a protease, or a protein that can alter the activity of a secreted protease. The "pathogenicity island" harboring the spi genes may encode the virulence determinants that set Salmonella apart from other enteric pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transferred DNA (T-DNA) of Agrobacterium tumefaciens serves as an insertional mutagen once integrated into a host plant's genome. As a means of facilitating reverse genetic analysis in Arabidopsis thaliana, we have developed a method that allows one to search for plants carrying F-DNA insertions within any sequenced Arabidopsis gene. Using PCR, we screened a collection of 9100 independent T-DNA-transformed Arabidopsis lines and found 17 T-DNA insertions within the 63 genes analyzed. The genes surveyed include members of various gene families involved in signal transduction and ion transport. As an example, data are shown for a T-DNA insertion that was found within CPK-9, a member of the gene family encoding calmodulin-domain protein kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.