41 resultados para wild harvesting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prochlorophytes are oxygenic prokaryotes differing from other cyanobacteria by the presence of a light-harvesting system containing both chlorophylls (Chls) a and b and by the absence of phycobilins. We demonstrate here that the Chl a/b binding proteins from all three known prochlorophyte genera are closely related to IsiA, a cyanobacterial Chl a-binding protein induced by iron starvation, and to CP43, a constitutively expressed Chl a antenna protein of photosystem II. The prochlorophyte Chl a/b protein (pcb) genes do not belong to the extended gene family encoding eukaryotic Chl a/b and Chl a/c light-harvesting proteins. Although higher plants and prochlorophytes share common pigment complements, their light-harvesting systems have evolved independently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal recognition particles (SRPs) in the cytosols of prokaryotes and eukaryotes are used to target proteins to cytoplasmic membranes and the endoplasmic reticulum, respectively. The mechanism of targeting relies on cotranslational SRP binding to hydrophobic signal sequences. An organellar SRP identified in chloroplasts (cpSRP) is unusual in that it functions posttranslationally to localize a subset of nuclear-encoded thylakoid proteins. In assays that reconstitute thylakoid integration of the light harvesting chlorophyll-binding protein (LHCP), stromal cpSRP binds LHCP posttranslationally to form a cpSRP/LHCP transit complex, which is believed to represent the LHCP form targeted to thylakoids. In this investigation, we have identified an 18-aa sequence motif in LHCP (L18) that, along with a hydrophobic domain, is required for transit complex formation. Fusion of L18 to the amino terminus of an endoplasmic reticulum-targeted protein, preprolactin, led to transit complex formation whereas wild-type preprolactin exhibited no ability to form a transit complex. In addition, a synthetic L18 peptide, which competed with LHCP for transit complex formation, caused a parallel inhibition of LHCP integration. Translocation of proteins by the thylakoid Sec and Delta pH transport systems was unaffected by the highest concentration of L18 peptide examined. Our data indicate that a motif contained in L18 functions in precursor recruitment to the posttranslational SRP pathway, one of at least four different thylakoid sorting pathways used by chloroplasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of most tissues require adhesion to a surface to grow. However, for hematopoietic cells, both stimulation and inhibition of proliferation by adhesion to extracellular matrix components have been described. Furthermore, it has been suggested that progenitor cells from chronic myelogenous leukemia show decreased β1 integrin-mediated adhesion to fibronectin, resulting in increased proliferation and abnormal trafficking. However, we show here that the chronic myelogenous leukemia-specific fusion protein p210bcr/abl stimulates the expression of α5β1 integrins and induces adhesion to fibronectin when expressed in the myeloid cell line 32D. Moreover, proliferation of both p210bcr/abl-transfected 32D (32Dp210) cells and untransfected 32D cells is stimulated by immobilized fibronectin. Cell cycle analysis revealed that nonadherent 32D and 32Dp210 cells are arrested in late G1 or early S phase, whereas the adherent fractions continue cycling. Although both adherent and nonadherent p210bcr/abl-transfected and parental 32D cells express equal amounts of cyclin A, a protein necessary for cell cycle progression at the G1/S boundary, cyclin A complexes immunoprecipitated from 32D cells cultured on immobilized fibronectin were found to be catalytically inactive in nonadherent but not in adherent cells. In addition, as compared with untransfected 32D cells, cyclin A immunoprecipitates from 32Dp210 cells exhibited a greatly elevated kinase activity and remained partially active irrespective of the adhesion status. The lack of cyclin A/cyclin-dependent kinase (CDK) 2 activity in nonadherent 32D cells appeared to result from increased expression and cyclin A complex formation of the CDK inhibitor p27Kip1. Taken together, our results indicate that adhesion stimulates cell cycle progression of hematopoietic cells by down-regulation of p27Kip1, resulting in activation of cyclin A/CDK2 complexes and subsequent transition through the G1/S adhesion checkpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several groups have attempted to develop gene therapy strategies to treat cancer via introduction of the wild-type (wt) p53 cDNA into cancer cells. Unfortunately, these approaches do not result in regulated expression of the p53 gene and do not reduce expression of the mutant p53 that is overexpressed in cancerous cells. These shortcomings may greatly limit the utility of this gene replacement approach. We describe an alternative strategy with trans-splicing ribozymes that can simultaneously reduce mutant p53 expression and restore wt p53 activity in various human cancers. The ribozyme accomplished such conversion by repairing defective p53 mRNAs with high fidelity and specificity. The corrected transcripts were translated to produce functional p53 that can transactivate p53-responsive promoters and down-modulate expression of the multidrug resistance (MDR1) gene promoter. The level of wt p53 activity generated was significant, resulting in a 23-fold induction of a p53-responsive promoter and a 3-fold reduction in MDR1 promoter expression in transfected cancer cells. Once efficient delivery systems are developed, this strategy should prove useful for making human cancers more responsive to p53 activity and more sensitive to chemotherapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S1 state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S1 state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S2 state or the recently discovered dark state situated between S1 and S2. The lifetimes of the carotenoid S1 states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7 ± 0.5 ps and 6 ± 0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides ≈1.9 ± 0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S2 excitation. In Rps. acidophila the carotenoid S1 to bacteriochlorophyll energy transfer is found to be quite inefficient (φET1 <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (φET1 ≈80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S1 → B800 electronic energy transfer (EET) pathway (≈85%) dominates over Car S1 → B850 EET (≈15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S1 → B850 EET (≈60%) is more efficient than the Car S1 → B800 EET (≈40%). The individual electronic couplings for the Car S1 → BChl energy transfer are estimated to be approximately 5–26 cm−1. A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S1 energy gaps in the two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms must sense their environment and rapidly tune their metabolism to ambient conditions to efficiently use available resources. We have identified a gene encoding a response regulator, NblR, that complements a cyanobacterial mutant unable to degrade its light-harvesting complex (phycobilisome), in response to nutrient deprivation. Cells of the nblR mutant (i) have more phycobilisomes than wild-type cells during nutrient-replete growth, (ii) do not degrade phycobilisomes during sulfur, nitrogen, or phosphorus limitation, (iii) cannot properly modulate the phycobilisome level during exposure to high light, and (iv) die rapidly when starved for either sulfur or nitrogen, or when exposed to high light. Apart from regulation of phycobilisome degradation, NblR modulates additional functions critical for cell survival during nutrient-limited and high-light conditions. NblR does not appear to be involved in acclimation responses that occur only during a specific nutrient limitation. In contrast, it controls at least some of the general acclimation responses; those that occur during any of a number of different stress conditions. NblR plays a pivotal role in integrating different environmental signals that link the metabolism of the cell to light harvesting capabilities and the activities of the photosynthetic apparatus; this modulation is critical for cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of genomic and proteomic data that is entered each day into databases and the experimental literature is outstripping the ability of experimental scientists to keep pace. While generic databases derived from automated curation efforts are useful, most biological scientists tend to focus on a class or family of molecules and their biological impact. Consequently, there is a need for molecular class-specific or other specialized databases. Such databases collect and organize data around a single topic or class of molecules. If curated well, such systems are extremely useful as they allow experimental scientists to obtain a large portion of the available data most relevant to their needs from a single source. We are involved in the development of two such databases with substantial pharmacological relevance. These are the GPCRDB and NucleaRDB information systems, which collect and disseminate data related to G protein-coupled receptors and intra-nuclear hormone receptors, respectively. The GPCRDB was a pilot project aimed at building a generic molecular class-specific database capable of dealing with highly heterogeneous data. A first version of the GPCRDB project has been completed and it is routinely used by thousands of scientists. The NucleaRDB was started recently as an application of the concept for the generalization of this technology. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm/ and the NucleaRDB at http://www.receptors.org/NR/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane proteins of peripheral light-harvesting complexes (LHCs) bind chlorophylls and carotenoids and transfer energy to the reaction centers for photosynthesis. LHCs of chlorophytes, chromophytes, dinophytes, and rhodophytes are similar in that they have three transmembrane regions and several highly conserved Chl-binding residues. All LHCs bind Chl a, but in specific taxa certain characteristic pigments accompany Chl a: Chl b and lutein in chlorophytes, Chl c and fucoxanthin in chromophytes, Chl c and peridinin in dinophytes, and zeaxanthin in rhodophytes. The specificity of pigment binding was examined by in vitro reconstitution of various pigments with a simple light-harvesting protein (LHCaR1), from a red alga (Porphyridium cruentum), that normally has eight Chl a and four zeaxanthin molecules. The pigments typical of a chlorophyte (Spinacea oleracea), a chromophyte (Thallasiosira fluviatilis), and a dinophyte (Prorocentrum micans) were found to functionally bind to this protein as evidenced by their participation in energy transfer to Chl a, the terminal pigment. This is a demonstration of a functional relatedness of rhodophyte and higher plant LHCs. The results suggest that eight Chl-binding sites per polypeptide are an ancestral trait, and that the flexibility to bind various Chl and carotenoid pigments may have been retained throughout the evolution of LHCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2-Cysteine peroxiredoxins (2-CPs) constitute a ubiquitous group of peroxidases that reduce cell-toxic alkyl hydroperoxides to their corresponding alcohols. Recently, we cloned 2-CP cDNAs from plants and characterized them as chloroplast proteins. To elucidate the physiological function of the 2-CP in plant metabolism, we generated antisense mutants in Arabidopsis. In the mutant lines a 2-CP deficiency developed during early leaf and plant development and eventually the protein accumulated to wild-type levels. In young mutants with reduced amounts of 2-CP, photosynthesis was impaired and the levels of D1 protein, the light-harvesting protein complex associated with photosystem II, chloroplast ATP synthase, and ribulose-1,5-bisphosphate carboxylase/oxygenase were decreased. Photoinhibition was particularly pronounced after the application of the protein synthesis inhibitor, lincomycin. We concluded that the photosynthetic machinery needs high levels of 2-CP during leaf development to protect it from oxidative damage and that the damage is reduced by the accumulation of 2-CP protein, by the de novo synthesis and replacement of damaged proteins, and by the induction of other antioxidant defenses in 2-CP mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans transformed Western Atlantic coastal marine ecosystems before modern ecological investigations began. Paleoecological, archeological, and historical reconstructions demonstrate incredible losses of large vertebrates and oysters from the entire Atlantic coast. Untold millions of large fishes, sharks, sea turtles, and manatees were removed from the Caribbean in the 17th to 19th centuries. Recent collapses of reef corals and seagrasses are due ultimately to losses of these large consumers as much as to more recent changes in climate, eutrophication, or outbreaks of disease. Overfishing in the 19th century reduced vast beds of oysters in Chesapeake Bay and other estuaries to a few percent of pristine abundances and promoted eutrophication. Mechanized harvesting of bottom fishes like cod set off a series of trophic cascades that eliminated kelp forests and then brought them back again as fishers fished their way down food webs to small invertebrates. Lastly, but most pervasively, mechanized harvesting of the entire continental shelf decimated large, long-lived fishes and destroyed three-dimensional habitats built up by sessile corals, bryozoans, and sponges. The universal pattern of losses demonstrates that no coastal ecosystem is pristine and few wild fisheries are sustainable along the entire Western Atlantic coast. Reconstructions of ecosystems lost only a century or two ago demonstrate attainable goals of establishing large and effective marine reserves if society is willing to pay the costs. Historical reconstructions provide a new scientific framework for manipulative experiments at the ecosystem scale to explore the feasibility and benefits of protection of our living coastal resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic organisms fuel their metabolism with light energy and have developed for this purpose an efficient apparatus for harvesting sunlight. The atomic structure of the apparatus, as it evolved in purple bacteria, has been constructed through a combination of x-ray crystallography, electron microscopy, and modeling. The detailed structure and overall architecture reveals a hierarchical aggregate of pigments that utilizes, as shown through femtosecond spectroscopy and quantum physics, elegant and efficient mechanisms for primary light absorption and transfer of electronic excitation toward the photosynthetic reaction center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We searched for new components that are involved in the positive regulation of nuclear gene expression by light by extending a screen for Arabidopsis cue (chlorophyll a/b-binding [CAB] protein-underexpressed) mutants (H.-M. Li, K. Culligan, R.A. Dixon, J. Chory [1995] Plant Cell 7: 1599–1610). cue mutants display reduced expression of the CAB3 gene, which encodes light-harvesting chlorophyll protein, the main chloroplast antenna. The new mutants can be divided into (a) phytochrome-deficient mutants (hy1 and phyB), (b) virescent or delayed-greening mutants (cue3, cue6, and cue8), and (c) uniformly pale mutants (cue4 and cue9). For each of the mutants, the reduction in CAB expression correlates with the visible phenotype, defective chloroplast development, and reduced abundance of the light-harvesting chlorophyll protein. Levels of protochlorophyllide oxidoreductase (POR) were reduced to varying degrees in etiolated mutant seedlings. In the dark, whereas the virescent mutants displayed reduced CAB expression and the lowest levels of POR protein, the other mutants expressed CAB and accumulated POR at near wild-type levels. All of the mutants, with the exception of cue6, were compromised in their ability to derepress CAB expression in response to phytochrome activation. Based on these results, we propose that the previously postulated plastid-derived signal is closely involved in the pathway through which phytochrome regulates the expression of nuclear genes encoding plastid proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.