19 resultados para uni-traveling-carrier
Resumo:
Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties.
Resumo:
P-glycoprotein (Pgp), a transmembrane efflux pump encoded by the MDR1 gene, transports various lipophilic drugs that enter the cell by passive diffusion through the lipid bilayer. Pgp-expressing multidrug-resistant cell lines are not usually cross-resistant to a hydrophilic antifolate methotrexate (MTX). MTX enters cells primarily through a folate carrier, but passive diffusion becomes the primary mode of MTX uptake in carrier-deficient cells. To test if a deficiency in MTX carrier would allow Pgp to confer resistance to MTX, a MTX carrier-deficient cell line (3T6-C26) was infected with a recombinant retrovirus expressing the human MDR1 gene. The infected 3T6-C26 cells showed increased survival in MTX relative to uninfected cells. Multistep selection of the infected cells with vinblastine led to increased Pgp expression and a concomitant increase in resistance to MTX. MTX resistance of Pgp-expressing 3T6-C26 cells was reduced by Pgp inhibitors, including a Pgp-specific monoclonal antibody UTC2. In contrast, the expression and the inhibition of Pgp had no effect on MTX resistance in 3T6 cells with normal carrier-mediated MTX uptake. Thus, a deficiency in the MTX carrier enables Pgp to confer resistance to MTX, suggesting that hydrophilic compounds may become Pgp substrates when such compounds enter cells by passive diffusion.
Resumo:
The electrophoretic export of ATP against the import of ADP in mitochondria bridges the intra- versus extramitochondrial ATP potential gap. Here we report that the electrical nature of the ADP/ATP exchange by the mitochondrial ADP/ATP carrier (AAC) can be directly studied by measuring the electrical currents via capacitive coupling of AAC-containing vesicles on a planar lipid membrane. The currents were induced by the rapid liberation of ATP or ADP with UV flash photolysis from caged nucleotides. Six different transport modes of the AAC were studied: heteroexchange with either ADP or ATP inside the vesicles, initiated by photolysis of caged ATP or ADP; homoexchange with ADPex/ADPin or ATPex/ATPin; and caged ADP or ATP with unloaded vesicles. The heteroexchange produced the largest currents with the longest duration in line with the electrical charge difference ATP4- versus ADP3-. Surprisingly, also in the homoexchange and with unloaded vesicles, small currents were measured with shorter duration. In all three modes with caged ATP, a negative charge moved into the vesicles and with caged ADP it moved out of the vesicles. All currents were completely inhibited by a mixture of the inhibitors of the AAC, carboxyatractyloside and hongkrekate, which proves that the currents are exclusively due to AAC function. The observed charge movements in the heteroexchange system agree with the prediction from transport studies in mitochondria and reconstituted vesicles. The unexpected charge movements in the homoexchange or unloaded systems are interpreted to reveal transmembrane rearrangements of charged sites in the AAC when occupied with ADP or ATP. The results also indicate that not only ATP4- but also ADP3- contribute, albeit in opposite direction, to the electrical nature of the ADP/ATP exchange, which is at variance with former conclusions from biochemical transport studies. These measurements open up new avenues of studying the electrical interactions of ADP and ATP with the AAC.
Resumo:
The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) are of biochemical interest because of their roles in fatty acid synthesis and their utilities in the bioengineering of plant seed oils. When the FatB1 cDNA encoding a 12:0-ACP TE (Uc FatB1) from California bay, Umbellularia californica (Uc) was expressed in Escherichia coli and in developing oilseeds of the plants Arabidopsis thaliana and Brassica napus, large amounts of laurate (12:0) and small amounts of myristate (14:0) were accumulated. We have isolated a TE cDNA from camphor (Cinnamomum camphorum) (Cc) seeds that shares 92% amino acid identity with Uc FatB1. This TE, Cc FatB1, mainly hydrolyzes 14:0-ACP as shown by E. coli expression. We have investigated the roles of the N- and C-terminal regions in determining substrate specificity by constructing two chimeric enzymes, in which the N-terminal portion of one protein is fused to the C-terminal portion of the other. Our results show that the C-terminal two-thirds of the protein is critical for the specificity. By site-directed mutagenesis, we have replaced several amino acids in Uc FatB1 by using the Cc FatB1 sequence as a guide. A double mutant, which changes Met-197 to an Arg and Arg-199 to a His (M197R/R199H), turns Uc FatB1 into a 12:0/14:0 TE with equal preference for both substrates. Another mutation, T231K, by itself does not effect the specificity. However, when it is combined with the double mutant to generate a triple mutant (M197R/R199H/T231K), Uc FatB1 is converted to a 14:0-ACP TE. Expression of the double-mutant cDNA in E. coli K27, a strain deficient in fatty acid degradation, results in accumulation of similar amounts of 12:0 and 14:0. Meanwhile the E. coli expressing the triple-mutant cDNA produces predominantly 14:0 with very small amounts of 12:0. Kinetic studies indicate that both wild-type Uc FatB1 and the triple mutant have similar values of Km,app with respect to 14:0-ACP. Inhibitory studies also show that 12:0-ACP is a good competitive inhibitor with respect to 14:0-ACP in both the wild type and the triple mutant. These results imply that both 12:0- and 14:0-ACP can bind to the two proteins equally well, but in the case of the triple mutant, the hydrolysis of 12:0-ACP is severely impaired. The ability to modify TE specificity should allow the production of additional "designer oils" in genetically engineered plants.