341 resultados para transcription elongation
Resumo:
The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens.
Resumo:
TFIIH is a multifunctional RNA polymerase II transcription factor that possesses DNA-dependent ATPase, DNA helicase, and protein kinase activities. Previous studies have established that TFIIH enters the preinitiation complex and fulfills a critical role in initiation by catalyzing ATP-dependent formation of the open complex prior to synthesis of the first phosphodiester bond of nascent transcripts. In this report, we present direct evidence that TFIIH also controls RNA polymerase II activity at a postinitiation stage of transcription, by preventing premature arrest by very early elongation complexes just prior to their transition to stably elongating complexes. Unexpectedly, we observe that TFIIH is capable of entering the transcription cycle not only during assembly of the preinitiation complex but also after initiation and synthesis of as many as four to six phosphodiester bonds. These findings shed new light on the role of TFIIH in initiation and promoter escape and reveal an unanticipated flexibility in the ability of TFIIH to interact with RNA polymerase II transcription intermediates prior to, during, and immediately after initiation.
Resumo:
Cessation of transcription at specific terminator DNA sequences is used by viruses, bacteria, and eukaryotes to regulate the expression of downstream genes, but the mechanisms of transcription termination are poorly characterized. To elucidate the kinetic mechanism of termination at the intrinsic terminators of enteric bacteria, we observed, by using single-molecule light microscopy techniques, the behavior of surface-immobilized Escherichia coli RNA polymerase (RNAP) molecules in vitro. An RNAP molecule remains at a canonical intrinsic terminator for ≈64 s before releasing DNA, implying the formation of an elongation-incompetent (paused) intermediate by transcription complexes that terminate but not by those that read through the terminator. Analysis of pause lifetimes establishes a complete minimal mechanism of termination in which paused intermediate formation is both necessary and sufficient to induce release of RNAP at the terminator. The data suggest that intrinsic terminators function by a nonequilibrium process in which terminator effectiveness is determined by the relative rates of nucleotide addition and paused state entry by the transcription complex.
Resumo:
Cells from patients with Cockayne syndrome (CS) are hypersensitive to DNA-damaging agents and are unable to restore damage-inhibited RNA synthesis. On the basis of repair kinetics of different types of lesions in transcriptionally active genes, we hypothesized previously that impaired transcription in CS cells is a consequence of defective transcription initiation after DNA damage induction. Here, we investigated the effect of UV irradiation on transcription by using an in vitro transcription system that allowed uncoupling of initiation from elongation events. Nuclear extracts prepared from UV-irradiated or mock-treated normal human and CS cells were assayed for transcription activity on an undamaged β-globin template. Transcription activity in nuclear extracts closely mimicked kinetics of transcription in intact cells: extracts from normal cells prepared 1 h after UV exposure showed a strongly reduced activity, whereas transcription activity was fully restored in extracts prepared 6 h after treatment. Extracts from CS cells exhibited reduced transcription activity at any time after UV exposure. Reduced transcription activity in extracts coincided with a strong reduction of RNA polymerase II (RNAPII) containing hypophosphorylated C-terminal domain, the form of RNAPII known to be recruited to the initiation complex. These results suggest that inhibition of transcription after UV irradiation is at least partially caused by repression of transcription initiation and not solely by blocked elongation at sites of lesions. Generation of hypophosphorylated RNAPII after DNA damage appears to play a crucial role in restoration of transcription. CS proteins may be required for this process in a yet unknown way.
Resumo:
Several models have been proposed for the mechanism of transcript termination by Escherichia coli RNA polymerase at rho-independent terminators. Yager and von Hippel (Yager, T. D. & von Hippel, P. H. (1991) Biochemistry 30, 1097–118) postulated that the transcription complex is stabilized by enzyme–nucleic acid interactions and the favorable free energy of a 12-bp RNA–DNA hybrid but is destabilized by the free energy required to maintain an extended transcription bubble. Termination, by their model, is viewed simply as displacement of the RNA transcript from the hybrid helix by reformation of the DNA helix. We have proposed an alternative model where the RNA transcript is stably bound to RNA polymerase primarily through interactions with two single-strand specific RNA-binding sites; termination is triggered by formation of an RNA hairpin that reduces binding of the RNA to one RNA-binding site and, ultimately, leads to its ejection from the complex. To distinguish between these models, we have tested whether E. coli RNA polymerase can terminate transcription at rho-independent terminators on single-stranded DNA. RNA polymerase cannot form a transcription bubble on these templates; thus, the Yager–von Hippel model predicts that intrinsic termination will not occur. We find that transcript elongation on single-stranded DNA templates is hindered somewhat by DNA secondary structure. However, E. coli RNA polymerase efficiently terminates and releases transcripts at several rho-independent terminators on such templates at the same positions as termination occurs on duplex DNAs. Therefore, neither the nontranscribed DNA strand nor the transcription bubble is essential for rho-independent termination by E. coli RNA polymerase.
Resumo:
The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays a role in transcription and RNA processing. Yeast ESS1, a peptidyl-prolyl cis/trans isomerase, is involved in RNA processing and can associate with the CTD. Using several types of assays we could not find any evidence of an effect of Pin1, the human homolog of ESS1, on transcription by RNA polymerase II in vitro or on the expression of a reporter gene in vivo. However, an inhibitor of Pin1, 5-hydroxy-1,4-naphthoquinone (juglone), blocked transcription by RNA polymerase II. Unlike N-ethylmaleimide, which inhibited all phases of transcription by RNA polymerase II, juglone disrupted the formation of functional preinitiation complexes by modifying sulfhydryl groups but did not have any significant effect on either initiation or elongation. Both RNA polymerases I and III, but not T7 RNA polymerase, were inhibited by juglone. The primary target of juglone has not been unambiguously identified, although a site on the polymerase itself is suggested by inhibition of RNA polymerase II during factor-independent transcription of single-stranded DNA. Because of its unique inhibitory properties juglone should prove useful in studying transcription in vitro.
Resumo:
TFIIH is a multifunctional RNA polymerase II general initiation factor that includes two DNA helicases encoded by the Xeroderma pigmentosum complementation group B (XPB) and D (XPD) genes and a cyclin-dependent protein kinase encoded by the CDK7 gene. Previous studies have shown that the TFIIH XPB DNA helicase plays critical roles not only in transcription initiation, where it catalyzes ATP-dependent formation of the open complex, but also in efficient promoter escape, where it suppresses arrest of very early RNA polymerase II elongation intermediates. In this report, we present evidence that ATP-dependent TFIIH action in transcription initiation and promoter escape requires distinct regions of the DNA template; these regions are well separated from the promoter region unwound by the XPB DNA helicase and extend, respectively, ≈23–39 and ≈39–50 bp downstream from the transcriptional start site. Taken together, our findings bring to light a role for promoter DNA in TFIIH action and are consistent with the model that TFIIH translocates along promoter DNA ahead of the RNA polymerase II elongation complex until polymerase has escaped the promoter.
Resumo:
Levels of mRNA for the chloroplast-encoded elongation factor Tu (tufA) showed a dramatic daily oscillation in the green alga Chlamydomonas reinhardtii, peaking once each day in the early light period. The oscillation of tufA mRNA levels continued in cells shifted to continuous light or continuous dark for at least 2-3 days. Run-off transcription analyses showed that the rate of tufA transcription also peaked early in the light period and, moreover, that this transcriptional oscillation continued in cells shifted to continuous conditions. The half-life of tufA mRNA was estimated at different times and found to vary considerably during a light-dark cycle but not in cells shifted to continuous light. Light-dark patterns of transcription of several other chloroplast-encoded genes were examined and also found to persist in cells shifted to continuous light or dark. These results indicate that a circadian clock controls the transcription of tufA and other chloroplast-encoded genes.
Resumo:
We have investigated two regions of the viral RNA of human immunodeficiency virus type 1 (HIV-1) as potential targets for antisense oligonucleotides. An oligodeoxynucleotide targeted to the U5 region of the viral genome was shown to block the elongation of cDNA synthesized by HIV-1 reverse transcriptase in vitro. This arrest of reverse transcription was independent of the presence of RNase H activity associated with the reverse transcriptase enzyme. A second oligodeoxynucleotide targeted to a site adjacent to the primer binding site inhibited reverse transcription in an RNase H-dependent manner. These two oligonucleotides were covalently linked to a poly(L-lysine) carrier and tested for their ability to inhibit HIV-1 infection in cell cultures. Both oligonucleotides inhibited virus production in a sequence- and dose-dependent manner. PCR analysis showed that they inhibited proviral DNA synthesis in infected cells. In contrast, an antisense oligonucleotide targeted to the tat sequence did not inhibit proviral DNA synthesis but inhibited viral production at a later step of virus development. These experiments show that antisense oligonucleotides targeted to two regions of HIV-1 viral RNA can inhibit the first step of viral infection--i.e., reverse transcription--and prevent the synthesis of proviral DNA in cell cultures.
Resumo:
Intrinsic termination of transcription in Escherichia coli involves the formation of an RNA hairpin in the nascent RNA. This hairpin plays a central role in the release of the transcript and polymerase at intrinsic termination sites on the DNA template. We have created variants of the lambda tR2 terminator hairpin and examined the relationship between the structure and stability of this hairpin and the template positions and efficiencies of termination. The results were used to test the simple nucleic acid destabilization model of Yager and von Hippel and showed that this model must be modified to provide a distinct role for the rU-rich sequence in the nascent RNA, since a perfect palindromic sequence that is sufficiently long to form an RNA hairpin that could destabilize the entire putative 12-bp RNA-DNA hybrid does not trigger termination at the expected positions. Rather, our results show that both a stable terminator hairpin and the run of 6-8 rU residues that immediately follows are required for effective intrinsic termination and that termination occurs at specific and invariant template positions relative to these two components. Possible structural or kinetic modifications of the simple model are proposed in the light of these findings and of recent results implicating "inchworming" and possible conformational heterogeneity of transcription complexes in intrinsic termination. Thus, these findings argue that the structure and dimensions of the hairpin are important determinants of the termination-elongation decision and suggest that a complete mechanism is likely to involve specific interactions of the polymerase, the RNA terminator hairpin, and, perhaps, the dT-rich template sequence that codes for the run of rU residues at the 3' end of the nascent transcript.
Resumo:
General transcription factor SIII, a heterotrimer composed of 110-kDa (p110), 18-kDa (p18), and 15-kDa (p15) subunits, increases the catalytic rate of transcribing RNA polymerase II by suppressing transient pausing by polymerase at multiple sites on DNA templates. Here we report molecular cloning and biochemical characterization of the SIII p18 subunit, which is found to be a member of the ubiquitin homology (UbH) gene family and functions as a positive regulatory subunit of SIII. p18 is a 118-amino acid protein composed of an 84-residue N-terminal UbH domain fused to a 34-residue C-terminal tail. Mechanistic studies indicate that p18 activates SIII transcriptional activity above a basal level inherent in the SIII p110 and p15 subunits. Taken together, these findings establish a role for p18 in regulating the activity of the RNA polymerase II elongation complex, and they bring to light a function for a UbH domain protein in transcriptional regulation.
Resumo:
Phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II has been suggested to be critical for transcription initiation, activation, or elongation. A kinase activity specific for CTD is a component of the general transcription factor TFIIH. Recently, a cyclin-dependent kinase-activator kinase (MO15 and cyclin H) was found to be associated with TFIIH preparations and was suggested to be the CTD kinase. TFIIH preparations containing mutant, kinase-deficient MO15 lack CTD kinase activity, indicating that MO15 is critical for polymerase phosphorylation. Nonetheless, these mutant TFIIH preparations were fully functional (in vitro) in both basal and activated transcription. These results indicate that CTD phosphorylation is not required for transcription with a highly purified system.
Resumo:
Interleukin 12 (IL-12)-induced T helper 1 (Th1) development requires Stat4 activation. However, antigen-activated Th1 cells can produce interferon γ (IFN-γ) independently of IL-12 and Stat4 activation. Thus, in differentiated Th1 cells, factors regulated by IL-12 and Stat4 may be involved in IFN-γ production. Using subtractive cloning, we identified ERM, an Ets transcription factor, to be a Th1-specific, IL-12-induced gene. IL-12-induction of ERM occurred in wild-type and Stat1-deficient, but not Stat4-deficient, T cells, suggesting ERM is Stat4-inducible. Retroviral expression of ERM did not restore IFN-γ production in Stat4-deficient T cells, but augmented IFN-γ expression in Stat4-heterozygous T cells. Ets factors frequently regulate transcription via cooperative interactions with other transcription factors, and ERM has been reported to cooperate with c-Jun. However, in the absence of other transcription factors, ERM augmented expression of an IFN-γ reporter by only 2-fold. Thus, determining the requirement for ERM in Th1 development likely will require gene targeting.
Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1
Resumo:
Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19ARF synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.
Resumo:
We have identified the mutation responsible for the autosomal recessive wasted (wst) mutation of the mouse. Wasted mice are characterized by wasting and neurological and immunological abnormalities starting at 21 days after birth; they die by 28 days. A deletion of 15.8 kb in wasted mice abolishes expression of a gene called Eef1a2, encoding a protein that is 92% identical at the amino acid level to the translation elongation factor EF1α (locus Eef1a). We have found no evidence for the involvement of another gene in this deletion. Expression of Eef1a2 is reciprocal with that of Eef1a. Expression of Eef1a2 takes over from Eef1a in heart and muscle at precisely the time at which the wasted phenotype becomes manifest. These data suggest that there are tissue-specific forms of the translation elongation apparatus essential for postnatal survival in the mouse.