29 resultados para toxicity bioassay
Resumo:
Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient “bypass Sec14p” phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1ts-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.
Resumo:
Antipyretic analgesics, taken in large doses over a prolonged period, cause a specific form of kidney disease, characterized by papillary necrosis and interstitial scarring. Epidemiological evidence incriminated mixtures of drugs including aspirin (ASA), phenacetin, and caffeine. The mechanism of toxicity is unclear. We tested the effects of ASA, acetaminophen (APAF, the active metabolite of phenacetin), caffeine, and other related drugs individually and in combination on mouse inner medullary collecting duct cells (mIMCD3). The number of rapidly proliferating cells was reduced by ≈50% by 0.5 mM ASA, salicylic acid, or APAF. The drugs had less effect on confluent cells, which proliferate slowly. Thus, the slow in vivo turnover of IMCD cells could explain why clinical toxicity requires very high doses of these drugs over a very long period. Caffeine greatly potentiated the effect of acetaminophen, pointing to a potential danger of the mixture. Cyclooxygenase (COX) inhibitors, indomethacin and NS-398, did not reduce cell number except at concentrations greatly in excess of those that inhibit COX. Therefore, COX inhibition alone is not toxic. APAF arrests most cells in late G1 and S and produces a mixed form of cell death with both oncosis (swollen cells and nuclei) and apoptosis. APAF is known to inhibit the synthesis of DNA and cause chromosomal aberrations due to inhibition of ribonucleotide reductase. Such effects of APAF might account for renal medullary cell death in vivo and development of uroepithelial tumors from surviving cells that have chromosomal aberrations.
Resumo:
The poison frogs (family Dendrobatidae) are terrestrial anuran amphibians displaying a wide range of coloration and toxicity. These frogs generally have been considered to be aposematic, but relatively little research has been carried out to test the predictions of this hypothesis. Here we use a comparative approach to test one prediction of the hypothesis of aposematism: that coloration will evolve in tandem with toxicity. Recently, we developed a phylogenetic hypothesis of the evolutionary relationships among representative species of poison frogs, using sequences from three regions of mitochondrial DNA. In our analysis, we use that DNA-based phylogeny and comparative analysis of independent contrasts to investigate the correlation between coloration and toxicity in the poison frog family (Dendrobatidae). Information on the toxicity of different species was obtained from the literature. Two different measures of the brightness and extent of coloration were used. (i) Twenty-four human observers were asked to rank different photos of each different species in the analysis in terms of contrast to a leaf-littered background. (ii) Color photos of each species were scanned into a computer and a computer program was used to obtain a measure of the contrast of the colors of each species relative to a leaf-littered background. Comparative analyses of the results were carried out with two different models of character evolution: gradual change, with branch lengths proportional to the amount of genetic change, and punctuational change, with all change being associated with speciation events. Comparative analysis using either method or model indicated a significant correlation between the evolution of toxicity and coloration across this family. These results are consistent with the hypothesis that coloration in this group is aposematic.
Resumo:
Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure created by two antiparallel β-strands, which combine with the already existing triple-stranded β-sheet of the toxin to form a five-stranded intermolecular, antiparallel β-sheet. Peptide residues Y3P, E5P, and L8P have the highest intermolecular contact area, indicating their importance in the binding of α-bungarotoxin; W1P, R2P, and Y4P also contribute significantly to the binding. A large number of characteristic hydrogen bonds and electrostatic and hydrophobic interactions are observed in the complex. The high-affinity peptide exhibits inhibitory potency that is better than any known peptide derived from AChR, and is equal to that of the whole α-subunit of AChR. The high degree of sequence similarity between the peptide and various types of AChRs implies that the binding mode found within the complex might possibly mimic the receptor binding to the toxin. The design of the high-affinity peptide was based on our previous findings: (i) the detection of a lead peptide (MRYYESSLKSYPD) that binds α-bungarotoxin, using a phage-display peptide library, (ii) the information about the three-dimensional structure of α-bungarotoxin/lead-peptide complex, and (iii) the amino acid sequence analysis of different AChRs.
Resumo:
The effect of copper on photoinhibition of photosystem II in vivo was studied in bean (Phaseolus vulgaris L. cv Dufrix). The plants were grown hydroponically in the presence of various concentrations of Cu2+ ranging from the optimum 0.3 μm (control) to 15 μm. The copper concentration of leaves varied according to the nutrient medium from a control value of 13 mg kg−1 dry weight to 76 mg kg−1 dry weight. Leaf samples were illuminated in the presence and absence of lincomycin at different light intensities (500–1500 μmol photons m−2 s−1). Lincomycin prevents the concurrent repair of photoinhibitory damage by blocking chloroplast protein synthesis. The photoinhibitory decrease in the light-saturated rate of O2 evolution measured from thylakoids isolated from treated leaves correlated well with the decrease in the ratio of variable to maximum fluorescence measured from the leaf discs; therefore, the fluorescence ratio was used as a routine measurement of photoinhibition in vivo. Excess copper was found to affect the equilibrium between photoinhibition and repair, resulting in a decrease in the steady-state concentration of active photosystem II centers of illuminated leaves. This shift in equilibrium apparently resulted from an increase in the quantum yield of photoinhibition (ΦPI) induced by excess copper. The kinetic pattern of photoinhibition and the independence of ΦPI on photon flux density were not affected by excess copper. An increase in ΦPI may contribute substantially to Cu2+ toxicity in certain plant species.
Resumo:
When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.
Resumo:
Oxygen free radicals have been proposed to mediate amyloid peptide (beta-AP)-induced neurotoxicity. To test this hypothesis, we evaluated the effects of EUK-8, a synthetic catalytic superoxide and hydrogen peroxide scavenger, on neuronal injury produced by beta-AP in organotypic hippocampal slice cultures. Cultures of equivalent postnatal day 35 (defined as mature) and 14 (defined as immature) were exposed to various concentrations of beta-AP (1-42 or 1-40) in the absence or presence of 25 microM EUK-8 for up to 72 hours. Neuronal injury was assessed by lactate dehydrogenase release and semiquantitative analysis of propidium iodide uptake at various times after the initiation of beta-AP exposure. Free radical production was inferred from the relative increase in dichlorofluorescein fluorescence, and the degree of lipid peroxidation was determined by assaying thiobarbituric acid-reactive substances. Treatment of mature cultures with beta-AP (50-250 microg/ml) in serum-free conditions resulted in a reproducible pattern of damage, causing a time-dependent increase in neuronal injury accompanied with formation of reactive oxygen species. However, immature cultures were entirely resistant to beta-AP-induced neurotoxicity and also demonstrated no dichlorofluorescein fluorescence or increased lipid peroxidation after beta-AP treatment. Moreover, mature slices exposed to beta-AP in the presence of 25 microM EUK-8 were significantly protected from beta-AP-induced neurotoxicity. EUK-8 also completely blocked beta-AP-induced free radical accumulation and lipid peroxidation. These results not only support a role for oxygen free radicals in beta-AP toxicity but also highlight the therapeutic potential of synthetic radical scavengers in Alzheimer disease.
Resumo:
Glutamate release activates multiple receptors that interact with each other and thus determine the response of the cell. Exploring these interactions is critical to developing an understanding of the functional consequences of synaptic transmission. Activation of metabotropic glutamate receptors (mGluRs) inhibits N-methyl-D-aspartate (NMDA)-evoked responses measured electrophysiologically in neostriatal slices. The present study examines the functional consequences of this regulation using infrared differential interference contrast videomicroscopy to measure and characterize glutamate receptor-induced cell swelling in a neostriatal brain slice preparation. This swelling is, in many cases, a prelude to necrotic cell death and the dye trypan blue was used to confirm that swelling can result in the death of neostriatal cells. Activation of mGluRs by the agonist 1-aminocyclopentane-1,3-dicarboxylic acid (tACPD) inhibited NMDA but not amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-induced swelling. This regulation was cell-type specific as tACPD did not alter NMDA-induced swelling in pyramidal cells of the hippocampus. Importantly, these findings could be extended to in vivo preparations. Pretreatment with tACPD limited the size of lesions and associated behavioral deficits induced by intrastriatal administration of the NMDA receptor agonist quinolinic acid.
Resumo:
Purified NADPH:cytochrome c (P-450) reductase (FpT; NADPH-ferrihemoprotein oxidoreductase, EC 1.6.2.4) can reductively activate mitomycin antibiotics through a one-electron reduction to species that alkylate DNA. To assess the involvement of FpT in the intracellular activation of the mitomycins, transfectants overexpressing a human FpT cDNA were established from a Chinese hamster ovary cell line deficient in dihydrofolate reductase (CHO-K1/dhfr-). The parental cell line was equisensitive to the cytotoxic action of mitomycin C under oxygenated and hypoxic conditions. In contrast, porfiromycin was considerably less cytotoxic to wild-type parental cells than was mitomycin C in air and markedly more cytotoxic under hypoxia. Two FpT-transfected clones were selected that expressed 19- and 27-fold more FpT activity than the parental line. Levels of other oxidoreductases implicated in the activation of the mitomycins were unchanged. Significant increases in sensitivity to mitomycin C and porfiromycin in the two FpT-transfected clones were seen under both oxygenated and hypoxic conditions, with the increases in toxicity being greater under hypoxia than in air. These findings demonstrate that FpT can bioreductively activate the mitomycins in living cells and implicate FpT in the differential aerobic/hypoxic toxicity of the mitomycins.
Resumo:
Cocaine exposure in utero causes severe alterations in the development of the central nervous system. To study the basis of these teratogenic effects in vitro, we have used cocultures of neurons and glial cells from mouse embryonic brain. Cocaine selectively affected embryonic neuronal cells, causing first a dramatic reduction of both number and length of neurites and then extensive neuronal death. Scanning electron microscopy demonstrated a shift from a multipolar neuronal pattern towards bi- and unipolarity prior to the rounding up and eventual disappearance of the neurons. Selective toxicity of cocaine on neurons was paralleled by a concomitant decrease of the culture content in microtubule-associated protein 2 (MAP2), a neuronal marker measured by solid-phase immunoassay. These effects on neurons were reversible when cocaine was removed from the culture medium. In contrast, cocaine did not affect astroglial cells and their glial fibrillary acidic protein (GFAP) content. Thus, in embryonic neuronal-glial cell cocultures, cocaine induces major neurite perturbations followed by neuronal death without affecting the survival of glial cells. Provided similar neuronal alterations are produced in the developing human brain, they could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following in utero exposure to cocaine.
Resumo:
In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.
Resumo:
Pokeweed antiviral protein (PAP), a 29-kDa protein isolated from Phytolacca americana inhibits translation by catalytically removing a specific adenine residue from the 28S rRNA of eukaryotic ribosomes. PAP has potent antiviral activity against many plant and animal viruses, including human immunodeficiency virus. We describe here development of a positive selection system to isolate PAP mutants with reduced toxicity. In vitro translation in the presence or absence of microsomal membranes shows that PAP is synthesized as a precursor and undergoes at least two different proteolytic processing steps to generate mature PAP. The PAP cDNA was placed under control of the galactose-inducible GAL1 promoter and transformed into Saccharomyces cerevisiae. Induction of PAP expression was lethal to yeast. The PAP expression plasmid was mutagenized and plasmids encoding mutant PAP genes were identified by their failure to kill S. cerevisiae. A number of mutant alleles were sequenced. In one mutant, a point mutation at Glu-177 inactivated enzymatic function in vitro, suggesting that this glutamic acid residue is located at or near the catalytic site. Mutants with either point mutations near the N terminus or a nonsense mutation at residue 237 produced protein that was enzymatically active in vitro, suggesting that the toxicity of PAP is not due solely to enzymatic activity. Toxicity of PAP appears to be a multistep process that involves possibly different domains of the protein.
Resumo:
Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.
Resumo:
In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Here we describe the isolation and characterization of another gene in the yeast Saccharomyces cerevisiae that plays a critical role in detoxification of reactive oxygen species. This gene, named ATX1, was originally isolated by its ability to suppress oxygen toxicity in yeast lacking SOD. ATX1 encodes a 8.2-kDa polypeptide exhibiting significant similarity and identity to various bacterial metal transporters. Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans. In yeast cells, ATX1 evidently acts in the transport and/or partitioning of copper, and this role in copper homeostasis appears to be directly relevant to the ATX1 suppression of oxygen toxicity: ATX1 was incapable of compensating for SOD when cells were depleted of exogenous copper. Strains containing a deletion in the chromosomal ATX1 locus were generated. Loss of ATX1 function rendered both mutant and wild-type SOD strains hypersensitive toward paraquat (a generator of superoxide anion) and was also associated with an increased sensitivity toward hydrogen peroxide. Hence, ATX1 protects cells against the toxicity of both superoxide anion and hydrogen peroxide.