30 resultados para thiol-based redox regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification and physical isolation of epithelial stem cells is critical to our understanding of their growth regulation during homeostasis, wound healing, and carcinogenesis. These stem cells remain poorly characterized because of the absence of specific molecular markers that permit us to distinguish them from their progeny, the transit amplifying (TA) cells, which have a more restricted proliferative potential. Cell kinetic analyses have permitted the identification of murine keratinocyte stem cells (KSCs) as slowly cycling cells that retain [3H]thymidine ([3H]Tdr) label, termed label-retaining cells (LRCs), whereas TA cells are visualized as rapidly cycling cells after a single pulse of [3H]Tdr, termed pulse-labeled cells (PLCs). Here, we report on the successful separation of KSCs from TA cells through the combined use of in vivo cell kinetic analysis and fluorescence-activated cell sorting. Specifically, we demonstrate that murine dorsal keratinocytes characterized by their high levels of α6 integrin and low to undetectable expression of the transferrin receptor (CD71) termed α6briCD71dim cells, are enriched for epithelial stem cells because they represent a minor (≈8%) and quiescent subpopulation of small blast-like cells, with a high nuclear:cytoplasmic ratio, containing ≈70% of label-retaining cells, the latter being a well documented characteristic of stem cells. Conversely, TA cells could be enriched in a phenotypically distinct subpopulation termed α6briCD71bri, representing the majority (≈60%) of basal keratinocytes that are actively cycling, and importantly contain ≈70% of [3H]Tdr pulse-labeled cells. Importantly, immunostaining of dorsal skin revealed the presence of CD71dim cells in the hair follicle bulge region, a well documented location for KSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer models were used to examine whether and under what conditions the multimeric protein complex is inhibited by high concentrations of one of its components—an effect analogous to the prozone phenomenon in precipitin tests. A series of idealized simple “ball-and-stick” structures representing small oligomeric complexes of protein molecules formed by reversible binding reactions were analyzed to determine the binding steps leading to each structure. The equilibrium state of each system was then determined over a range of starting concentrations and Kds and the steady-state concentration of structurally complete oligomer calculated for each situation. A strong inhibitory effect at high concentrations was shown by any protein molecule forming a bridge between two or more separable parts of the complex. By contrast, proteins linked to the outside of the complex by a single bond showed no inhibition whatsoever at any concentration. Nonbridging, multivalent proteins in the body of the complex could show an inhibitory effect or not depending on the structure of the complex and the strength of its bonds. On the basis of this study, we suggest that the prozone phenomenon will occur widely in living cells and that it could be a crucial factor in the regulation of protein complex formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model for regulation of the tryptophan operon is presented. This model takes into account repression, feedback enzyme inhibition, and transcriptional attenuation. Special attention is given to model parameter estimation based on experimental data. The model's system of delay differential equations is numerically solved, and the results are compared with experimental data on the temporal evolution of enzyme activity in cultures of Escherichia coli after a nutritional shift (minimal + tryptophan medium to minimal medium). Good agreement is obtained between the numeric simulations and the experimental results for wild-type E. coli, as well as for two different mutant strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RegulonDB is a database on mechanisms of transcription regulation and operon organization in Escherichia coli K-12. The current version has considerably increased numbers of regulatory elements such as promoters, binding sites and terminators. The complete repertoire of known and predicted DNA-binding transcriptional regulators can be considered to be included in this version. The database now distinguishes different allosteric conformations of regulatory proteins indicating the one active in binding and regulating the different promoters. A new set of operon predictions has been incorporated. The relational design has been modified accordingly. Furthermore, a major improvement is a graphic display enabling browsing of the database with a Java-based graphic user interface with three zoom-levels connected to properties of each chromo­somal element. The purpose of these modifications is to make RegulonDB a useful tool and control set for tran­scriptome experiments. RegulonDB can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We searched for new components that are involved in the positive regulation of nuclear gene expression by light by extending a screen for Arabidopsis cue (chlorophyll a/b-binding [CAB] protein-underexpressed) mutants (H.-M. Li, K. Culligan, R.A. Dixon, J. Chory [1995] Plant Cell 7: 1599–1610). cue mutants display reduced expression of the CAB3 gene, which encodes light-harvesting chlorophyll protein, the main chloroplast antenna. The new mutants can be divided into (a) phytochrome-deficient mutants (hy1 and phyB), (b) virescent or delayed-greening mutants (cue3, cue6, and cue8), and (c) uniformly pale mutants (cue4 and cue9). For each of the mutants, the reduction in CAB expression correlates with the visible phenotype, defective chloroplast development, and reduced abundance of the light-harvesting chlorophyll protein. Levels of protochlorophyllide oxidoreductase (POR) were reduced to varying degrees in etiolated mutant seedlings. In the dark, whereas the virescent mutants displayed reduced CAB expression and the lowest levels of POR protein, the other mutants expressed CAB and accumulated POR at near wild-type levels. All of the mutants, with the exception of cue6, were compromised in their ability to derepress CAB expression in response to phytochrome activation. Based on these results, we propose that the previously postulated plastid-derived signal is closely involved in the pathway through which phytochrome regulates the expression of nuclear genes encoding plastid proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments using planktonic organisms revealed that the balance of radiant energy and available nutrients regulated herbivore growth rates through their effects on abundance and chemical composition of primary producers. Both algae and herbivores were energy limited at low light/nutrient ratios, but both were nutrient limited at high light/nutrient ratios. Herbivore growth increased with increasing light intensity at low values of the light/nutrient ratio due to increases in algal biomass, but growth decreased with increasing light at a high light/nutrient ratio due to decreases in algal quality. Herbivore production therefore was maximal at intermediate levels of the light/nutrient ratio. The results contribute to an understanding of mass transfer mechanisms in ecosystems and illustrate the importance of integration of energy-based and material-based currencies in ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NIFL regulatory protein controls transcriptional activation of nitrogen fixation (nif) genes in Azotobacter vinelandii by direct interaction with the enhancer binding protein NIFA. Modulation of NIFA activity by NIFL, in vivo occurs in response to external oxygen concentration or the level of fixed nitrogen. Spectral features of purified NIFL and chromatographic analysis indicate that it is a flavoprotein with FAD as the prosthetic group, which undergoes reduction in the presence of sodium dithionite. Under anaerobic conditions, the oxidized form of NIFL inhibits transcriptional activation by NIFA in vitro, and this inhibition is reversed when NIFL is in the reduced form. Hence NIFL is a redox-sensitive regulatory protein and may represent a type of flavoprotein in which electron transfer is not coupled to an obvious catalytic activity. In addition to its ability to act as a redox sensor, the activity of NIFL is also responsive to adenosine nucleotides, particularly ADP. This response overrides the influence of redox status on NIFL and is also observed with refolded NIFL apoprotein, which lacks the flavin moiety. These observations suggest that both energy and redox status are important determinants of nif gene regulation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenobarbitone-responsive minimal promoter has been shown to lie between nt -179 and nt + 1 in the 5' (upstream) region of the CYP2B1/B2 gene in rat liver, on the basis of the drug responsiveness of the sequence linked to human growth hormone gene as reporter and targeted to liver as an asialoglycoprotein-DNA complex in vivo. Competition analyses of the nuclear protein-DNA complexes formed in gel shift assays with the positive (nt -69 to -98) and negative (nt -126 to -160) cis elements (PE and NE, respectively) identified within this region earlier indicate that the same protein may be binding to both the elements. The protein species purified on PE and NE affinity columns appear to be identical based on SDS/PAGE analysis, where it migrates as a protein of 26-28 kDa. Traces of a high molecular weight protein (94-100 kDa) are also seen in the preparation obtained after one round of affinity chromatography. The purified protein stimulates transcription of a minigene construct containing the 179 nt on the 5' side of the CYP2B1/B2 gene linked to the I exon in a cell-free system from liver nuclei. The purified protein can give rise to all the three complexes (I, II, and III) with the PE, just as the crude nuclear extract, under appropriate conditions. Manipulations in vitro indicate that the NE has a significantly higher affinity for the dephosphorylated form than for the phosphorylated form of the protein. The PE binds both forms. Phenobarbitone treatment of the animal leads to a significant increase in the phosphorylation of the 26- to 28-kDa and 94-kDa proteins in nuclear labeling experiments followed by isolation on a PE affinity column. We propose that the protein binding predominantly to the NE in the dephosphorylated state characterizes the basal level of transcription of the CYP2B1/B2 gene. Phenobarbitone treatment leads to phosphorylation of the protein, shifting the equilibrium toward binding to the PE. This can promote interaction with an upstream enhancer through other proteins such as the 94-kDa protein and leads to a significant activation of transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca2+ is believed to play a role in mediating insulin action and dysregulation of Ca2+ flux is observed in diabetic animals and humans, we examined the status of intracellular Ca2+ in mice carrying the dominant agouti allele, viable yellow (Avy). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca2+]i) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca2+]i in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca2+]i.