18 resultados para subject positions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene encoding the glycolytic enzyme triose-phosphate isomerase (TPI; EC 5.3.1.1) has been central to the long-standing controversy on the origin and evolutionary significance of spliceosomal introns by virtue of its pivotal support for the introns-early view, or exon theory of genes. Putative correlations between intron positions and TPI protein structure have led to the conjecture that the gene was assembled by exon shuffling, and five TPI intron positions are old by the criterion of being conserved between animals and plants. We have sequenced TPI genes from three diverse eukaryotes--the basidiomycete Coprinus cinereus, the nematode Caenorhabditis elegans, and the insect Heliothis virescens--and have found introns at seven novel positions that disrupt previously recognized gene/protein structure correlations. The set of 21 TPI introns now known is consistent with a random model of intron insertion. Twelve of the 21 TPI introns appear to be of recent origin since each is present in but a single examined species. These results, together with their implication that as more TPI genes are sequenced more intron positions will be found, render TPI untenable as a paradigm for the introns-early theory and, instead, support the introns-late view that spliceosomal introns have been inserted into preexisting genes during eukaryotic evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using taxonomic characters derived from EcoRI restriction endonuclease digestion of genomic DNA and hybridization with a labeled rRNA operon from Escherichia coli, a polymorphic structure of Listeria monocytogenes, characterized by fragments with different frequencies of occurrence, was observed. This structure was expanded by creating predicted patterns through a recursive process of observation, expectation, prediction, and assessment of completeness. This process was applied, in turn, to normalized strain patterns, fragment bands, and positions of EcoRI recognition sites relative to rRNA regions. Analysis of 1346 strains provided observed patterns, fragment sizes, and their frequencies of occurrence in the patterns. Fragment size statistics led to the creation of unobserved combinations of bands, predicted pattern types. The observed fragment bands revealed positions of EcoRI sites relative to rRNA sequences. Each EcoRI site had a frequency of occurrence, and unobserved fragment sizes were postulated on the basis of knowing the restriction site locations. The result of the recursion process applied to the components of the strain data was an extended classification with observed and predicted members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence analysis of peptides naturally presented by major histocompatibility complex (MHC) class I molecules has revealed allele-specific motifs in which the peptide length and the residues observed at certain positions are restricted. Nevertheless, peptides containing the standard motif often fail to bind with high affinity or form physiologically stable complexes. Here we present the crystal structure of a well-characterized antigenic peptide from ovalbumin [OVA-8, ovalbumin-(257-264), SIINFEKL] in complex with the murine MHC class I H-2Kb molecule at 2.5-A resolution. Hydrophobic peptide residues Ile-P2 and Phe-P5 are packed closely together into binding pockets B and C, suggesting that the interplay of peptide anchor (P5) and secondary anchor (P2) residues can couple the preferred sequences at these positions. Comparison with the crystal structures of H-2Kb in complex with peptides VSV-8 (RGYVYQGL) and SEV-9 (FAPGNYPAL), where a Tyr residue is used as the C pocket anchor, reveals that the conserved water molecule that binds into the B pocket and mediates hydrogen bonding from the buried anchor hydroxyl group could not be likewise positioned if the P2 side chain were of significant size. Based on this structural evidence, H-2Kb has at least two submotifs: one with Tyr at P5 (or P6 for nonamer peptides) and a small residue at P2 (i.e., Ala or Gly) and another with Phe at P5 and a medium-sized hydrophobic residue at P2 (i.e., Ile). Deciphering of these secondary submotifs from both crystallographic and immunological studies of MHC peptide binding should increase the accuracy of T-cell epitope prediction.