22 resultados para stock transfer process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordinated assembly of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62) to form the bacteriophage T4 DNA polymerase holoenzyme is a multistep process. A partially opened toroid-shaped gp45 is loaded around DNA by gp44/62 in an ATP-dependent manner. Gp43 binds to this complex to generate the holoenzyme in which gp45 acts to topologically link gp43 to DNA, effectively increasing the processivity of DNA replication. Stopped-flow fluorescence resonance energy transfer was used to investigate the opening and closing of the gp45 ring during holoenzyme assembly. By using two site-specific mutants of gp45 along with a previously characterized gp45 mutant, we tracked changes in distances across the gp45 subunit interface through seven conformational changes associated with holoenzyme assembly. Initially, gp45 is partially open within the plane of the ring at one of the three subunit interfaces. On addition of gp44/62 and ATP, this interface of gp45 opens further in-plane through the hydrolysis of ATP. Addition of DNA and hydrolysis of ATP close gp45 in an out-of-plane conformation. The final holoenzyme is formed by the addition of gp43, which causes gp45 to close further in plane, leaving the subunit interface open slightly. This open interface of gp45 in the final holoenzyme state is proposed to interact with the C-terminal tail of gp43, providing a point of contact between gp45 and gp43. This study further defines the dynamic process of bacteriophage T4 polymerase holoenzyme assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) has been shown to be impaired in mice deficient in the brain-derived neurotrophic factor (BDNF) gene, as well as in a number of other knockout animals. Despite its power the gene-targeting approach is always fraught with the danger of looking at the cumulative direct and indirect effects of the absence of a particular gene rather than its immediate function. The re-expression of a specific gene at a selective time point and at a specific site in gene-defective mutants presents a potent procedure to overcome this limitation and to evaluate the causal relationship between the absence of a particular gene and the impairment of a function in gene-defective animals. Here we demonstrate that the re-expression of the BDNF gene in the CA1 region almost completely restores the severely impaired LTP in hippocampal slices of BDNF-deficient mice. The results therefore provide strong evidence for the direct involvement of BDNF in the process of LTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash photolysis and pulse radiolysis measurements demonstrate a conformational dependence of electron transfer rates across a 16-mer helical bundle (three-helix metalloprotein) modified with a capping CoIII(bipyridine)3 electron acceptor at the N terminus and a 1-ethyl-1'-ethyl-4,4'- bipyridinium donor at the C terminus. For the CoIII(peptide)3-1-ethyl-1'-ethyl-4,4'-bipyridinium maquettes, the observed transfer is a first order, intramolecular process, independent of peptide concentration or laser pulse energy. In the presence of 6 M urea, the random coil bundle (approximately 0% helicity) has an observed electron transfer rate constant of kobs = 900 +/- 100 s-1. In the presence of 25% trifluoroethanol (TFE), the helicity of the peptide is 80% and the kobs increases to 2000 +/- 200 s-1. Moreover, the increase in the rate constant in TFE is consistent with the observed decrease in donor-acceptor distance in this solvent. Such bifunctional systems provide a class of molecules for testing the effects of conformation on electron transfer in proteins and peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The catalytic, or third domain of Pseudomonas exotoxin A (PEIII) catalyzes the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, inhibiting protein synthesis. We have determined the structure of PEIII crystallized in the presence of NAD to define the site of binding and mechanism of activation. However, NAD undergoes a slow hydrolysis and the crystal structure revealed only the hydrolysis products, AMP and nicotinamide, bound to the enzyme. To better define the site of NAD binding, we have now crystallized PEIII in the presence of a less hydrolyzable NAD analog, beta-methylene-thiazole-4-carboxamide adenine dinucleotide (beta-TAD), and refined the complex structure at 2.3 angstroms resolution. There are two independent molecules of PEIII in the crystal, and the conformations of beta-TAD show some differences in the two binding sites. The beta-TAD attached to molecule 2 appears to have been hydrolyzed between the pyrophosphate and the nicotinamide ribose. However molecule 1 binds to an intact beta-TAD and has no crystal packing contacts in the vicinity of the binding site, so that the observed conformation and interaction with the PEIII most likely resembles that of NAD bound to PEIII in solution. We have compared this complex with the catalytic domains of diphtheria toxin, heat labile enterotoxin, and pertussis toxin, all three of which it closely resembles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of photo-induced electrontransfer from high-potential iron-sulfur protein (HiPIP) to the photosynthetic reaction center (RC) of the purple phototroph Rhodoferarfermentans were studied. The rapid photooxidation of heme c-556 belonging to RC is followed, in the presence of HiPIP, by a slower reduction having a second-order rate constant of 4.8 x 10(7) M(-1) x s(-1). The limiting value of kobs at high HiPIP concentration is 95 s(-1). The amplitude of this slow process decreases with increasing HiPIP concentration. The amplitude of a faster phase, observed at 556 and 425 nm and involving heme c-556 reduction, increases proportionately. The rate constant of this fast phase, determined at 425 and 556 nm, is approximately 3 x 10(5) s(-1). This value is not dependent on HiPIP concentration, indicating that it is related to a first-order process. These observations are interpreted as evidence for the formation of a HiPIP-RC complex prior to the excitation flash, having a dissociation constant of -2.5 microM. The fast phase is absent at high ionic strength, indicating that the complex involves mainly electrostatic interactions. The ionic strength dependence of kobs for the slow phase yields a second-order rate constant at infinite ionic strength of 5.4 x 10(6) M(-1) x s(-1) and an electrostatic interaction energy of -2.1 kcal/mol (1 cal = 4.184 J). We conclude that Rhodoferar fermentans HiPIP is a very effective electron donor to the photosynthetic RC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report studies of energy transfer from the 800-nm absorbing pigment (B800) to the 850-nm absorbing pigment (B850) of the LH2 peripheral antenna complex and from LH2 to the core antenna complex (LH1) in Rhodobacter (Rb.) sphaeroides. The B800 to B850 process was studied in membranes from a LH2-reaction center (no LH1) mutant of Rb. sphaeroides and the LH2 to LH1 transfer was studied in both the wild-type species and in LH2 mutants with blue-shifted B850. The measurements were performed by using approximately 100-fs pulses to probe the formation of acceptor excitations in a two-color pump-probe measurement. Our experiments reveal a B800 to B850 transfer time of approximately 0.7 ps at 296 K and energy transfer from LH2 to LH1 is characterized by a time constant of approximately 3 ps at 296 K and approximately 5 ps at 77 K. In the blue-shifted B850 mutants, the transfer time from B850 to LH1 becomes gradually longer with increasing blue-shift of the B850 band as a result of the decreasing spectral overlap between the antennae. The results have been used to produce a model for the association between the ring-like structures that are characteristic of both the LH2 and LH1 antennae.