17 resultados para stimulus repetition
Resumo:
A central theme of cognitive neuroscience is that different parts of the brain perform different functions. Recent evidence from neuropsychology suggests that even the processing of arbitrary stimulus categories that are defined solely by cultural conventions (e.g., letters versus digits) can become spatially segregated in the cerebral cortex. How could the processing of stimulus categories that are not innate and that have no inherent structural differences become segregated? We propose that the temporal clustering of stimuli from a given category interacts with Hebbian learning to lead to functional localization. Neural network simulations bear out this hypothesis.
Resumo:
Amperometry has been used for real-time electrochemical detection of the quantal release of catecholamines and indolamines from secretory granules in chromaffin and mast cells. Using improved-sensitivity carbon fiber electrodes, we now report the detection of quantal catecholamine release at the surface of somas of neonatal superior cervical ganglion neurons that are studded with axon varicosities containing synaptic vesicles. Local application of a bath solution containing high K+ or black widow spider venom, each of which greatly enhances spontaneous quantal release of transmitter at synapses, evoked barrages of small-amplitude (2-20 pA), short-duration (0.5-2 ms) amperometric quantal "spikes". The median spike charge was calculated as 11.3 fC. This figure corresponds to 3.5 x 10(4) catecholamine molecules per quantum of release, or approximately 1% that evoked by the discharge of the contents of a chromaffin granule.