24 resultados para somatic idioms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four critical stages of embryogenesis, including callus induction, cellular acquisition of morphogenetic competence, expression of embryogenic program, and development and maturation of somatic embryos during somatic embryogenesis from leaf discs of eggplant (Solanum melongena L.), were identified by scanning electron microscopy. Temporal changes in arginine decarboxylase (ADC) activity and polyamines (PAs) during critical stages of embryogenesis revealed that high levels of PAs (especially putrescine [PUT]), due to higher ADC activity in discs from the apical region (with high embryogenic capacity) than from the basal region of the leaf (with poor embryogenic capacity), were correlated with differential embryogenesis response. Kinetic studies of the up- and down-regulation of embryogenesis revealed that PUT and difluoromethylarginine pretreatments were most effective before the onset of embryogenesis. Basal discs pretreated with PUT for 4 to 7 d showed improved embryogenesis that was comparable to apical discs. PA content at various critical steps in embryogenesis from basal discs were found to be comparable to that of apical discs following adjustments of cellular PA content by PUT. In contrast, pretreatment of apical discs with difluoromethylarginine for 3 d significantly reduced ADC activity, cellular PA content, and embryogenesis to levels that were comparable to basal discs. Discs from the basal region of leaves treated with PUT for 3 d during the identified stages of embryogenesis improved their embryogenic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High affinity antibodies are generated in mice and humans by means of somatic hypermutation (SHM) of variable (V) regions of Ig genes. Mutations with rates of 10−5–10−3 per base pair per generation, about 106-fold above normal, are targeted primarily at V-region hot spots by unknown mechanisms. We have measured mRNA expression of DNA polymerases ι, η, and ζ by using cultured Burkitt's lymphoma (BL)2 cells. These cells exhibit 5–10-fold increases in heavy-chain V-region mutations targeted only predominantly to RGYW (R = A or G, Y = C or T, W = T or A) hot spots if costimulated with T cells and IgM crosslinking, the presumed in vivo requirements for SHM. An ∼4-fold increase pol ι mRNA occurs within 12 h when cocultured with T cells and surface IgM crosslinking. Induction of pols η and ζ occur with T cells, IgM crosslinking, or both stimuli. The fidelity of pol ι was measured at RGYW hot- and non-hot-spot sequences situated at nicks, gaps, and double-strand breaks. Pol ι formed T⋅G mispairs at a frequency of 10−2, consistent with SHM-generated C to T transitions, with a 3-fold increased error rate in hot- vs. non-hot-spot sequences for the single-nucleotide overhang. The T cell and IgM crosslinking-dependent induction of pol ι at 12 h may indicate an SHM “triggering” event has occurred. However, pols ι, η, and ζ are present under all conditions, suggesting that their presence is not sufficient to generate mutations because both T cell and IgM stimuli are required for SHM induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic mosaicism caused by in vivo reversion of inherited mutations has been described in several human genetic disorders. Back mutations resulting in restoration of wild-type sequences and second-site mutations leading to compensatory changes have been shown in mosaic individuals. In most cases, however, the precise genetic mechanisms underlying the reversion events have remained unclear, except for the few instances where crossing over or gene conversion have been demonstrated. Here, we report a patient affected with Wiskott–Aldrich syndrome (WAS) caused by a 6-bp insertion (ACGAGG) in the WAS protein gene, which abrogates protein expression. Somatic mosaicism was documented in this patient whose majority of T lymphocytes expressed nearly normal levels of WAS protein. These lymphocytes were found to lack the deleterious mutation and showed a selective growth advantage in vivo. Analysis of the sequence surrounding the mutation site showed that the 6-bp insertion followed a tandem repeat of the same six nucleotides. These findings strongly suggest that DNA polymerase slippage was the cause of the original germ-line insertion mutation in this family and that the same mechanism was responsible for its deletion in one of the propositus T cell progenitors, thus leading to reversion mosaicism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BCL6 gene encodes a zinc-finger transcription factor and is altered by chromosomal arrangements in its 5' noncoding region in approximately 30% of diffuse large-cell lymphoma (DLCL). We report here that, in 22/30 (73%) DLCL and 7/15 (47%) follicular lymphoma (FL), but not in other tumor types, the BCL6 gene is also altered by multiple (1.4 x 10(-3) -1.6 x 10(-2) per bp), often biallelic, mutations clustering in its 5' noncoding region. These mutations are of somatic origin and are found in cases displaying either normal or rearranged BLC6 alleles indicating their independence from chromosomal rearrangements and linkage to immunoglobulin genes. These alterations identify a mechanism of genetic instability in malignant B cells and may have been selected during lymphomagenesis for their role in altering BCL6 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal and spatial changes in the intracellular Ca2+ concentration ([Ca2+]i) were examined in dendrites and somata of rat cerebellar Purkinje neurons by combining whole-cell patch-clamp recording and fast confocal laser-scanning microscopy. In cells loaded via the patch pipette with the high-affinity Ca2+ indicator Calcium Green-1 (Kd approximately 220 nM), a single synaptic climbing fiber response, a so-called complex spike, resulted in a transient elevation of [Ca2+]i that showed distinct differences among various subcellular compartments. With conventional imaging, the Ca2+ signals were prominent in the dendrites and almost absent in the soma. Confocal recordings from the somatic region, however, revealed steep transient increases in [Ca2+]i that were confined to a submembrane shell of 2- to 3-microns thickness. In the central parts of the soma [Ca2+]i increases were much slower and had smaller amplitudes. The kinetics and amplitudes of the changes in [Ca2+]i were analyzed in more detail by using the fast, low-affinity Ca2+ indicator Calcium Green-5N (Kd approximately 17 microM). We found that brief depolarizing pulses produced [Ca2+]i increases in a narrow somatic submembrane shell that resembled those seen in the dendrites. These results provide direct experimental evidence that the surface-to-volume ratio is a critical determinant of the spatiotemporal pattern of Ca2+ signals evoked by synaptic activity in neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contractile proteins are encoded by multigene families, most of whose members are differentially expressed in fast- versus slow-twitch myofibers. This fiber-type-specific gene regulation occurs by unknown mechanisms and does not occur within cultured myocytes. We have developed a transient, whole-animal assay using somatic gene transfer to study this phenomenon and have identified a fiber-type-specific regulatory element within the promoter region of a slow myofiber-specific gene. A plasmid-borne luciferase reporter gene fused to various muscle-specific contractile gene promoters was differentially expressed when injected into slow- versus fast-twitch rat muscle: the luciferase gene was preferentially expressed in slow muscle when fused to a slow troponin I promoter, and conversely, was preferentially expressed in fast muscle when fused to a fast troponin C promoter. In contrast, the luciferase gene was equally well expressed by both muscle types when fused to a nonfiber-type-specific skeletal actin promoter. Deletion analysis of the troponin I promoter region revealed that a 157-bp enhancer conferred slow-muscle-preferential activity upon a minimal thymidine kinase promoter. Transgenic analysis confirmed the role of this enhancer in restricting gene expression to slow-twitch myofibers. Hence, somatic gene transfer may be used to rapidly define elements that direct myofiber-type-specific gene expression prior to the generation of transgenic mice.