42 resultados para soluble cytokine receptors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TVA, the cellular receptor for subgroup A avian leukosis viruses (ALV-A) can mediate viral entry when expressed as a transmembrane protein or as a glycosylphosphatidylinositol-linked protein on the surfaces of transfected mammalian cells. To determine whether mammalian cells can be rendered susceptible to ALV-A infection by attaching a soluble form of TVA to their plasma membranes, the TVA-epidermal growth factor (EGF) fusion protein was generated. TVA-EGF is comprised of the extracellular domain of TVA linked to the mature form of human EGF. Flow cytometric analysis confirmed that TVA-EGF is a bifunctional reagent capable of binding simultaneously to cell surface EGF receptors and to an ALV-A surface envelope-Ig fusion protein. TVA-EGF prebound to transfected mouse fibroblasts expressing either wild-type or kinase-deficient human EGF receptors, rendered these cells highly susceptible to infection by ALV-A vectors. Viral infection was blocked specifically in the presence of a recombinant human EGF protein, demonstrating that the binding of TVA-EGF to EGF receptors was essential for infectivity. These studies have demonstrated that a soluble TVA-ligand fusion protein can mediate viral infection when attached to specific cell surfaces, suggesting an approach for targeting retroviral infection to specific cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Searching for nervous system candidates that could directly induce T cell cytokine secretion, I tested four neuropeptides (NPs): somatostatin, calcitonin gene-related peptide, neuropeptide Y, and substance P. Comparing neuropeptide-driven versus classical antigen-driven cytokine secretion from T helper cells Th0, Th1, and Th2 autoimmune-related T cell populations, I show that the tested NPs, in the absence of any additional factors, directly induce a marked secretion of cytokines [interleukin 2 (IL-2), interferon-γ, IL-4, and IL-10) from T cells. Furthermore, NPs drive distinct Th1 and Th2 populations to a “forbidden” cytokine secretion: secretion of Th2 cytokines from a Th1 T cell line and vice versa. Such a phenomenon cannot be induced by classical antigenic stimulation. My study suggests that the nervous system, through NPs interacting with their specific T cell-expressed receptors, can lead to the secretion of both typical and atypical cytokines, to the breakdown of the commitment to a distinct Th phenotype, and a potentially altered function and destiny of T cells in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most poxviruses, including variola, the causative agent of smallpox, express a secreted protein of 35 kDa, vCCI, which binds CC-chemokines with high affinity. This viral protein competes with the host cellular CC-chemokine receptors (CCRs), reducing inflammation and interfering with the host immune response. Such proteins or derivatives may have therapeutic uses as anti-inflammatory agents. We have determined the crystal structure to 1.85-Å resolution of vCCI from cowpox virus, the prototype of this poxvirus virulence factor. The molecule is a β-sandwich of topology not previously described. A patch of conserved residues on the exposed face of a β-sheet that is strongly negatively charged might have a role in binding of CC-chemokines, which are positively charged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) is a well characterized cytokine that appears to play a major role in directing the cellular response to injury, driving fibrogenesis, and, thus, potentially underlying the progression of chronic injury to fibrosis. In this study, we report the use of a novel TGF-β receptor antagonist to block fibrogenesis induced by ligation of the common bile duct in rats. The antagonist consisted of a chimeric IgG containing the extracellular portion of the TGF-β type II receptor. This “soluble receptor” was infused at the time of injury; in some experiments it was given at 4 days after injury, as a test of its ability to reverse fibrogenesis. The latter was assessed by expression of collagen, both as the mRNA in stellate cells isolated from control or injured liver and also by quantitative histochemistry of tissue sections. When the soluble receptor was administered at the time of injury, collagen I mRNA in stellate cells from the injured liver was 26% of that from animals receiving control IgG (P < 0.0002); when soluble receptor was given after injury induction, collagen I expression was 35% of that in control stellate cells (P < 0.0001). By quantitative histochemistry, hepatic fibrosis in treated animals was 55% of that in controls. We conclude that soluble TGF-β receptor is an effective inhibitor of experimental fibrogenesis in vivo and merits clinical evaluation as a novel agent for controlling hepatic fibrosis in chronic liver injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptin (OB), an adipocyte-secreted circulating hormone, and its receptor (OB-R) are key components of an endocrine loop that regulates mammalian body weight. In this report we have analyzed signal transduction activities of OB-R containing the fatty mutation [OB-R(fa)], a single amino acid substitution at position 269 (Gln → Pro) in the OB-R extracellular domain that results in the obese phenotype of the fatty rat. We find that this mutant receptor exhibits both ligand-independent transcriptional activation via interleukin 6 and hematopoietin receptor response elements and ligand-independent activation of signal transducer and activator of transcription (STAT) proteins 1 and 3. However, OB-R(fa) is unable to constitutively activate STAT5B and is highly impaired for ligand induced activation of STAT5B compared with OB-R(wt). Introduction of the fatty mutation into a OB-R/G-CSF-R chimera generates a receptor with constitutive character that is similar but distinct from that of OB-R(fa). Constitutive mutant OB-R(fa) receptor signaling is repressed by coexpression of OB-R(wt). The implications of an extracellular domain amino acid substitution generating a cytokine receptor with a partially constitutive phenotype are discussed both in terms of the mechanism of OB-R triggering and the biology of the fatty rat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anti-common gamma chain (γc) mAb CP.B8 is shown to inhibit interleukin 4 (IL-4)-dependent proliferation of phytohemagglutinin (PHA) activated T cells noncompetitively with respect to cytokine by blocking the IL-4-induced heterodimerization of IL-4Rα and γc receptor chains. Affinities for the binding of IL-4 to Cos-7 cells transfected with huIL-4Rα, and to PHA blasts expressing both IL-4Rα and γc, were used to estimate the affinity of the key interaction between γc and the binary IL-4Rα⋅IL-4 complex on the cell surface. This affinity was defined in terms of the dimensionless ratio [IL-4Rα⋅IL-4⋅γc]/[IL-4Rα⋅IL-4], which we designate KR. The results show that on PHA blasts this interaction is relatively weak; KR ≈ 9, implying that ≈10% of the limiting IL-4Rα chain remains free of γc even at saturating concentrations of IL-4. This quantitative treatment establishes KR as a key measure of the coupling between ligand binding and receptor activation, providing a basis for functional distinctions between different receptors that are activated by ligand-induced receptor dimerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokine–GAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid plaques in Alzheimer disease are primarily aggregates of Aβ peptides that are derived from the amyloid precursor protein (APP). Neurotransmitter agonists that activate phosphatidylinositol hydrolysis and protein kinase C stimulate APP processing and generate soluble, non-amyloidogenic APP (APPs). Elevations in cAMP oppose this stimulatory effect and lead to the accumulation of cell-associated APP holoprotein containing amyloidogenic Aβ peptides. We now report that cAMP signaling can also increase cellular levels of APP holoprotein by stimulating APP gene expression in astrocytes. Treatment of astrocytes with norepinephrine or isoproterenol for 24 h increased both APP mRNA and holoprotein levels, and these increases were blocked by the β-adrenergic antagonist propranolol. Treatment with 8-bromo-adenosine 3′,5′-cyclic monophosphate or forskolin for 24 h similarly increased APP holoprotein levels; astrocytes were also transformed into process-bearing cells expressing increased amounts of glial fibrillary acidic protein, suggesting that these cells resemble reactive astrocytes. The increases in APP mRNA and holoprotein in astrocytes caused by cAMP stimulation were inhibited by the immunosuppressant cyclosporin A. Our study suggests that APP overexpression by reactive astrocytes during neuronal injury may contribute to Alzheimer disease neuropathology, and that immunosuppressants can inhibit cAMP activation of APP gene transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial cells are important in a variety of physiological and pathophysiological processes. The growth and functions of vascular endothelial cells are regulated both by soluble mitogenic and differentiation factors and by interactions with the extracellular matrix; however, relatively little is known about the role of the matrix. In the present study, we investigate whether integrin-mediated anchorage to a substratum coated with the extracellular matrix protein fibronectin regulates growth factor signaling events in human endothelial cells. We show that cell adhesion to fibronectin and growth factor stimulation trigger distinct initial tyrosine phosphorylation events in endothelial cells. Thus, integrin-dependent adhesion of endothelial cells leads to tyrosine phosphorylation of both focal adhesion kinase and paxillin, but not of several growth factor receptors. Conversely, EGF stimulation causes receptor autophosphorylation, with no effect on focal adhesion kinase or paxillin tyrosine phosphorylation. Adhesion to fibronectin, in the absence of growth factors, leads to activation of MAPK. In addition, adhesion to fibronectin also potentiates growth factor signaling to MAPK. Thus, polypeptide growth factor activation of MAPK in anchored cells is far more effective than in cells maintained in suspension. Other agonists known to activate MAPK were also examined for their ability to activate MAPK in an anchorage-dependent manner. The neuropeptide bombesin, the bioactive lipid lysophosphatidic acid (LPA), and the cytokine tumor necrosis factor α, which signal through diverse mechanisms, were all able to activate MAPK to a much greater degree in fibronectin-adherent cells than in suspended cells. In addition, tumor necrosis factor α activation of c-Jun kinase (JNK) was also much more robust in anchored cells. Together, these data suggest a cooperation between integrins and soluble mitogens in efficient propagation of signals to downstream kinases. This cooperation may contribute to anchorage dependence of mitogenic cell cycle progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T-cell antigen coreceptor CD4 also serves as the receptor for the envelope glycoprotein gp120 of HIV. Extensive mutational analysis of CD4 has implicated residues from a portion of the extracellular amino-terminal domain (D1) in gp120 binding. However, none of these proteins has been fully characterized biophysically, and thus the precise effects on molecular structure and binding interactions are unknown. In the present study, we produced soluble versions of three mutant CD4 molecules (F43V, G47S, and A55F) and characterized their structural properties, thermostability, and ability to bind gp120. Crystallographic and thermodynamic analysis showed minimal structural alterations in the F43V and G47S mutant proteins, which have solvent-exposed mutant side chains. In contrast, some degree of disorder appears to exist in the folded state of A55F, as a result of mutating a buried side chain. Real time kinetic measurements of the interaction of the mutant proteins with gp120 showed affinity decreases of 5-fold for G47S, 50-fold for A55F, and 200-fold for F43V. Although both rate constants for the binding reaction were affected by these mutations, the loss in affinity was mainly due to a decrease in on rates, with less drastic changes occurring in the off rates. These observations suggest the involvement of conformational adaptation in the CD4–gp120 interaction. Together, the structural and kinetic data confirm that F43V is a critical residue in gp120 recognition site, which may also include main chain interactions at residue Gly-47.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors of several cytokine signal transduction pathways. Their expression is induced by cytokine activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and they act as a negative feedback loop by subsequently inhibiting the JAK/STAT pathway either by direct interaction with activated JAKs or with the receptors. These interactions are mediated at least in part by the SH2 domain of SOCS proteins but these proteins also contain a highly conserved C-terminal homology domain termed the SOCS box. Here we show that the SOCS box mediates interactions with elongins B and C, which in turn may couple SOCS proteins and their substrates to the proteasomal protein degradation pathway. Analogous to the family of F-box-containing proteins, it appears that the SOCS proteins may act as adaptor molecules that target activated cell signaling proteins to the protein degradation pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mast cells (MC) are stem cell factor-dependent tissue-based hematopoietic cells with substantial functional heterogeneity. Cord blood-derived human MC (hMC) express functional receptors for IL-5, and IL-5 mediates stem cell factor-dependent comitogenesis of hMC in vitro. Although IL-5 is not required for normal hMC development, we considered that it might prime hMC for their high-affinity Fc receptor for IgE (FcɛRI)-dependent generation of cytokines, as previously demonstrated for IL-4. Compared with hMC maintained in stem cell factor alone, hMC primed with IL-5 expressed 2- to 4-fold higher steady-state levels of TNF-α, IL-5, IL-13, macrophage inflammatory protein 1α, and granulocyte-macrophage colony-stimulating factor transcripts 2 h after FcɛRI crosslinking and secreted 2- to 5-fold greater quantities of the corresponding cytokines, except IL-13, at 6 h. Unlike IL-4, IL-5 priming did not enhance FcɛRI-dependent histamine release. Thus, IL-5 augments cytokine production by hMC by a mechanism distinct from that of IL-4 and with a different resultant profile of cytokine production. These observations suggest a potentially autocrine effect of IL-5 on hMC for amplification of allergic immune responses, in addition to its recognized paracrine effects on eosinophils, and implicate both IL-4 and IL-5 in the modulation of the hMC phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insects defend themselves against infectious microorganisms by synthesizing potent antimicrobial peptides. Drosophila has appeared in recent years as a favorable model to study this innate host defense. A genetic analysis of the regulation of the antifungal peptide drosomycin has demonstrated a key role for the transmembrane receptor Toll, which prompted the search for mammalian homologs. Two of these, Toll-like receptor (TLR)2 and TLR4, recently were shown to play a critical role in innate immunity against bacteria. Here we describe six additional Toll-related genes (Toll-3 to Toll-8) in Drosophila in addition to 18-wheeler. Two of these genes, Toll-3 and Toll-4, are expressed at a low level. Toll-6, -7, and -8, on the other hand, are expressed at high levels during embryogenesis and molting, suggesting that, like Toll and 18w, they perform developmental functions. Finally, Toll-5 is expressed only in larvae and adults. By using chimeric constructs, we have tested the capacity of the signaling Toll/IL-1R homology domains of these receptors to activate antimicrobial peptide promoters and found that only Toll and Toll-5 can activate the drosomycin promoter in transfected cells, thus demonstrating specificity at the level of the Toll/IL-1R homology domain. In contrast, none of these constructs activated antibacterial peptide promoters, suggesting that Toll-related receptors are not involved in the regulation of antibacterial peptide expression. This result was independently confirmed by the demonstration that a dominant-negative version of the kinase Pelle can block induction of drosomycin by the cytokine Spaetzle, but does not affect induction of the antibacterial peptide attacin by lipopolysaccharide.