55 resultados para soluble cellulose
Resumo:
Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin.
Resumo:
It has been demonstrated that CD8+ T cells produce a soluble factor(s) that suppresses human immunodeficiency virus (HIV) replication in CD4+ T cells. The role of soluble factors in the suppression of HIV replication in monocyte/macrophages (M/M) has not been fully delineated. To investigate whether a CD8+ T-cell-derived soluble factor(s) can also suppress HIV infection in the M/M system, primary macrophages were infected with the macrophage tropic HIV-1 strain Ba-L. CD8+ T-cell-depleted peripheral blood mononuclear cells were also infected with HIV-1 IIIB or Ba-L. HIV expression from the chronically infected macrophage cell line U1 was also determined in the presence of CD8+ T-cell supernatants or β-chemokines. We demonstrate that: (i) CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV replication in the M/M system; (ii) antibodies to regulated on activation normal T-cell expressed and Secreted (RANTES), macrophage inflammatory protein 1α (MIP-1α) and MIP-1β did not, whereas antibodies to interleukin 10, interleukin 13, interferon α, or interferon γ modestly reduced anti-HIV activity of the CD8+ T-cell supernatants; and (iii) the CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV-1 IIIB replication in peripheral blood mononuclear cells as well as HIV expression in U1 cells. These results suggest that HIV-suppressor activity of CD8+ T cells is a multifactorial phenomenon, and that RANTES, MIP-1α, and MIP-1β do not account for the entire scope of CD8+ T-cell-derived HIV-suppressor factors.
Resumo:
The N terminus of the scrapie isoform of prion protein (PrPSc) can be truncated without loss of scrapie infectivity and, correspondingly, the truncation of the N terminus of the cellular isoform, PrPC, still permits conversion into PrPSc. To assess whether additional segments of the PrP molecule can be deleted, we previously removed regions of putative secondary structure in PrPC; in the present study we found that deletion of each of the four predicted helices prevented PrPSc formation, as did deletion of the stop transfer effector region and the C178A mutation. Removal of a 36-residue loop between helices 2 and 3 did not prevent formation of protease-resistant PrP; the resulting scrapie-like protein, designated PrPSc106, contained 106 residues after cleavage of an N-terminal signal peptide and a C-terminal sequence for glycolipid anchor addition. Addition of the detergent Sarkosyl to cell lysates solubilized PrPSc106, which retained resistance to digestion by proteinase K. These results suggest that all the regions of proposed secondary structure in PrP are required for PrPSc formation, as is the disulfide bond stabilizing helices 3 and 4. The discovery of PrPSc106 should facilitate structural studies of PrPSc, investigations of the mechanism of PrPSc formation, and the production of PrPSc-specific antibodies.
Resumo:
Considerable evidence indicates that CD4+ T cells are important in the pathogenesis of rheumatoid arthritis (RA), but the antigens recognized by these T cells in the joints of patients remain unclear. Previous studies have suggested that type II collagen (CII) and human cartilage gp39 (HCgp39) are among the most likely synovial antigens to be involved in T cell stimulation in RA. Furthermore, experiments have defined dominant peptide determinants of these antigens when presented by HLA-DR4, the most important RA-associated HLA type. We used fluorescent, soluble peptide–DR4 complexes (tetramers) to detect synovial CD4+ T cells reactive with CII and HCgp39 in DR4+ patients. The CII-DR4 complex bound in a specific manner to CII peptide-reactive T cell hybridomas, but did not stain a detectable fraction of synovial CD4+ cells. A background percentage of positive cells (<0.2%) was not greater in DR4 (DRB1*0401) patients compared with those without this disease-associated allele. Similar results were obtained with the gp39-DR4 complex for nearly all RA patients. In a small subset of DR4+ patients, however, the percentage of synovial CD4+ cells binding this complex was above background and could not be attributed to nonspecific binding. These studies demonstrate the potential for peptide–MHC class II tetramers to be used to track antigen-specific T cells in human autoimmune diseases. Together, the results also suggest that the major oligoclonal CD4+ T cell expansions present in RA joints are not specific for the dominant CII and HCgp39 determinants.
Resumo:
The cohesin-dockerin interaction in Clostridium thermocellum cellulosome mediates the tight binding of cellulolytic enzymes to the cellulosome-integrating protein CipA. Here, this interaction was used to study the effect of different cellulose-binding domains (CBDs) on the enzymatic activity of C. thermocellum endoglucanase CelD (1,4-β-d endoglucanase, EC3.2.1.4) toward various cellulosic substrates. The seventh cohesin domain of CipA was fused to CBDs originating from the Trichoderma reesei cellobiohydrolases I and II (CBDCBH1 and CBDCBH2) (1,4-β-d glucan-cellobiohydrolase, EC3.2.1.91), from the Cellulomonas fimi xylanase/exoglucanase Cex (CBDCex) (β-1,4-d glucanase, EC3.2.1.8), and from C. thermocellum CipA (CBDCipA). The CBD-cohesin hybrids interacted with the dockerin domain of CelD, leading to the formation of CelD-CBD complexes. Each of the CBDs increased the fraction of cellulose accessible to hydrolysis by CelD in the order CBDCBH1 < CBDCBH2 ≈ CBDCex < CBDCipA. In all cases, the extent of hydrolysis was limited by the disappearance of sites accessible to CelD. Addition of a batch of fresh cellulose after completion of the reaction resulted in a new burst of activity, proving the reversible binding of the intact complexes despite the apparent binding irreversibility of some CBDs. Furthermore, burst of activity also was observed upon adding new batches of CelD–CBD complexes that contained a CBD differing from the first one. This complementation between different CBDs suggests that the sites made available for hydrolysis by each of the CBDs are at least partially nonoverlapping. The only exception was CBDCipA, whose sites appeared to overlap all of the other sites.
Resumo:
The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.
Resumo:
The structures of the genes encoding the α1 and β1 subunits of murine soluble guanylyl cyclase (sGC) were determined. Full-length cDNAs isolated from mouse lungs encoding the α1 (2.5 kb) and β1 (3.3 kb) subunits are presented in this report. The α1 sGC gene is approximately 26.4 kb and contains nine exons, whereas the β1 sGC gene spans 22 kb and consists of 14 exons. The positions of exon/intron boundaries and the sizes of introns for both genes are described. Comparison of mouse genomic organization with the Human Genome Database predicted the exon/intron boundaries of the human genes and revealed that human and mouse α1 and β1 sGC genes have similar structures. Both mouse genes are localized on the third chromosome, band 3E3-F1, and are separated by a fragment that is 2% of the chromosomal length. The 5′ untranscribed regions of α1 and β1 subunit genes were subcloned into luciferase reporter constructs, and the functional analysis of promoter activity was performed in murine neuroblastoma N1E-115 cells. Our results indicate that the 5′ untranscribed regions for both genes possess independent promoter activities and, together with the data on chromosomal localization, suggest independent regulation of both genes.
Resumo:
We compared peripheral and mucosal primary CD8 T cell responses to inflammatory and noninflammatory forms of antigen in a T cell-adoptive transfer system. Immunization with the soluble antigen, ovalbumin (ova), administered i.p. or orally without adjuvant, activated nonmucosal CD8 T cells but did not induce cytotoxic activity. However, after activation, the transferred cells entered the intestinal mucosa and became potent antigen-specific killers. Thus, exogenous intact soluble protein entered the major histocompatibility complex class I antigen presentation pathway and induced mucosal cytotoxic T lymphocytes. Moreover, distinct costimulatory requirements for activation of peripheral versus mucosal T cells were noted in that the CD28 ligand, B7-1, was critical for activated mucosal T cell generation but not for activation of peripheral CD8 T cells. The costimulator, B7-2, was required for optimum activation of both populations. Infection with a new recombinant vesicular stomatitis virus encoding ovalbumin induced lytic activity in mucosal as well as peripheral sites, demonstrating an adjuvant effect of inflammatory mediators produced during virus infection. Generation of antiviral cytotoxic T lymphocytes was also costimulation-dependent. The results indicated that induction of peripheral tolerance via antigen administration may not extend to mucosal sites because of distinct costimulatory and inflammatory signals in the mucosa.
Resumo:
Despite considerable concerns with pharmacological stimulation of fetal hemoglobin (Hb F) as a therapeutic option for the β-globin disorders, the molecular basis of action of Hb F-inducing agents remains unclear. Here we show that an intracellular pathway including soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG) plays a role in induced expression of the γ-globin gene. sGC, an obligate heterodimer of α- and β-subunits, participates in a variety of physiological processes by converting GTP to cGMP. Northern blot analyses with erythroid cell lines expressing different β-like globin genes showed that, whereas the β-subunit is expressed at similar levels, high-level expression of the α-subunit is preferentially observed in erythroid cells expressing γ-globin but not those expressing β-globin. Also, the levels of expression of the γ-globin gene correlate to those of the α-subunit. sGC activators or cGMP analogs increased expression of the γ-globin gene in erythroleukemic cells as well as in primary erythroblasts from normal subjects and patients with β-thalassemia. Nuclear run-off assays showed that the sGC activator protoporphyrin IX stimulates transcription of the γ-globin gene. Furthermore, increased expression of the γ-globin gene by well known Hb F-inducers such as hemin and butyrate was abolished by inhibiting sGC or PKG activity. Taken together, these results strongly suggest that the sGC–PKG pathway constitutes a mechanism that regulates expression of the γ-globin gene. Further characterization of this pathway should permit us to develop new therapeutics for the β-globin disorders.
Resumo:
Sephadex-binding RNA ligands (aptamers) were obtained through in vitro selection. They could be classified into two groups based on their consensus sequences and the aptamers from both groups showed strong binding to Sephadex G-100. One of the highest affinity aptamers, D8, was chosen for further characterization. Aptamer D8 bound to dextran B512, the soluble base material of Sephadex, but not to isomaltose, isomaltotriose and isomaltotetraose, suggesting that its optimal binding site might consist of more than four glucose residues linked via α-1,6 linkages. The aptamer was very specific to the Sephadex matrix and did not bind appreciably to other supporting matrices, such as Sepharose, Sephacryl, cellulose or pustulan. Using Sephadex G-100, the aptamer could be purified from a complex mixture of cellular RNA, giving an enrichment of at least 60 000-fold, compared with a non-specific control RNA. These RNA aptamers can be used as affinity tags for RNAs or RNA subunits of ribonucleoproteins to allow rapid purification from complex mixtures of RNA using only Sephadex.
Resumo:
Arabidopsis cyt1 mutants have a complex phenotype indicative of a severe defect in cell wall biogenesis. Mutant embryos arrest as wide, heart-shaped structures characterized by ectopic accumulation of callose and the occurrence of incomplete cell walls. Texture and thickness of the cell walls are irregular, and unesterified pectins show an abnormally diffuse distribution. To determine the molecular basis of these defects, we have cloned the CYT1 gene by a map-based approach and found that it encodes mannose-1-phosphate guanylyltransferase. A weak mutation in the same gene, called vtc1, has previously been identified on the basis of ozone sensitivity due to reduced levels of ascorbic acid. Mutant cyt1 embryos are deficient in N-glycosylation and have an altered composition of cell wall polysaccharides. Most notably, they show a 5-fold decrease in cellulose content. Characteristic aspects of the cyt1 phenotype, including radial swelling and accumulation of callose, can be mimicked with the inhibitor of N-glycosylation, tunicamycin. Our results suggest that N-glycosylation is required for cellulose biosynthesis and that a deficiency in this process can account for most phenotypic features of cyt1 embryos.
Resumo:
We describe the construction of a soluble protein carrying the N-terminal extracellular domain (ECD) of the α7 subunit of the nicotinic acetylcholine receptor. The approach was to fuse the α7 ECD at the C and N termini of several monomeric and pentameric soluble carrier proteins and to investigate the soluble expression of the product in Escherichia coli. An initial screening of six carrier proteins resulted in the selection of a fusion protein comprising, from the N to the C terminus, the maltose binding protein, a 17-aa linker containing an enterokinase binding site, and the α7 ECD. This protein is soluble upon expression in bacteria and is purified by affinity chromatography. It binds the competitive nicotinic antagonist α-bungarotoxin with 2.5 μM affinity and displays a CD spectrum corresponding to a folded protein. The method might be suitable to produce large quantities of protein for crystallization and immunochemical experiments.
Resumo:
We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized.
Resumo:
Alternative splicing leads to the expression of multiple isoforms of the subunits (IFNAR1 and IFNAR2) of the type I IFN receptor. Here we describe two transcripts representing extracellular forms of ovine IFNAR1 and show that soluble extracellular forms of both IFNAR2 and IFNAR1, prepared in recombinant form in Escherichia coli, have antiviral (AV) activity in the absence of IFN. Exposure of Madin-Darby bovine kidney cells to the extracellular domain (R2E) of IFNAR2 at concentrations as low as 10 nM afforded complete protection against vesicular stomatitis virus and led to the rapid activation of the transcription factors ISGF3 and GAF. Although R2E can bind IFN (Kd ≈70 nM), activity was observed irrespective of whether or not ligand was present. R2E was inactive on mouse L929 cells but active on L929 cells expressing a membraneanchored, ovine/human chimeric IFNAR2 with an ovine extracellular domain. The data suggest that AV activity is conferred by the ability of soluble R2E to associate with the transfected IFNAR2 subunit rather than resident murine IFNAR1. Soluble extracellular forms of IFNAR1 have lower AV activity than R2E on Madin-Darby bovine kidney cells but are less species-specific and protect wild-type L929 cells as efficiently as the transfected cell line, presumably by interacting with one of the murine receptor subunits.
Resumo:
Cell walls were isolated from the mesocarp of grape (Vitis vinifera L.) berries at developmental stages from before veraison through to the final ripe berry. Fluorescence and light microscopy of intact berries revealed no measurable change in cell wall thickness as the mesocarp cells expanded in the ripening fruit. Isolated walls were analyzed for their protein contents and amino acid compositions, and for changes in the composition and solubility of constituent polysaccharides during development. Increases in protein content after veraison were accompanied by an approximate 3-fold increase in hydroxyproline content. The type I arabinogalactan content of the pectic polysaccharides decreased from approximately 20 mol % of total wall polysaccharides to about 4 mol % of wall polysaccharides during berry development. Galacturonan content increased from 26 to 41 mol % of wall polysaccharides, and the galacturonan appeared to become more soluble as ripening progressed. After an initial decrease in the degree of esterification of pectic polysaccharides, no further changes were observed nor were there large variations in cellulose (30–35 mol % of wall polysaccharides) or xyloglucan (approximately 10 mol % of wall polysaccharides) contents. Overall, the results indicate that no major changes in cell wall polysaccharide composition occurred during softening of ripening grape berries, but that significant modification of specific polysaccharide components were observed, together with large changes in protein composition.