187 resultados para simian-virus-40 (SV40) large tumour-antigen nuclear localization sequence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently found that okadaic acid, which shows strong inhibitory activity on protein serine/threonine phosphatases and tumor-promoting activity in vivo and in vitro, induces minisatellite mutation (MSM). Human tumors and chemically induced counterparts in experimental animals are also sometimes associated with MSM. In the present study, we demonstrated minisatellite (MS) instability in severe combined immunodeficiency (SCID) cells in which the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is impaired. Cells from a SCID fibroblast cell line transformed by simian virus 40 large tumor antigen, SC3VA2, and from an embryonal SCID fibroblast cell line, SC1K, were cloned and propagated to 107 to 108 cells, and then subjected to subcloning. After propagation of each subclone to 107 to 108 cells, DNA samples were digested with HinfI and analyzed by Southern blotting using the Pc-1 MS sequence as a probe. Under low-stringency conditions, about 40 MS bands were detected, with 45% ± 6% and 37% ± 3% of SC3VA2 and SC1K cells, respectively, having MSM. In contrast, cells from the RD13B2 cell line, which was established from SCVA2 by introducing human chromosome 8q fragments, on which DNA-PKcs is known to reside, to complement the SCID phenotype, showed a very low frequency of MSM (3% ± 3%). The high frequencies of MSM in SC3VA2 and SC1K were significant, with no difference between the two. The present study clearly demonstrates that MS instability exists in SCID fibroblasts, suggesting that DNA-PKcs might be involved in the stable maintenance of MS sequences in the genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the molecular basis for the clinical phenotype of incomplete penetrance of familial retinoblastoma, we have examined the functional properties of three RB mutations identified in the germ line of five different families with low penetrance. RB mutants isolated from common adult cancers and from classic familial retinoblastoma (designated as classic RB mutations) are unstable and generally do not localize to the nucleus, do not undergo cyclin-dependent kinase (cdk)-mediated hyperphosphorylation, show absent protein “pocket” binding activity, and do not suppress colony growth of RB(−) cells. In contrast, two low-penetrant alleles (661W and “deletion of codon 480”) retained the ability to localize to the nucleus, showed normal cdk-mediated hyperphosphorylation in vivo, exhibited a binding pattern to simian virus 40 large T antigen using a quantitative yeast two-hybrid assay that was intermediate between classic mutants (null) and wild-type RB, and had absent E2F1 binding in vitro. A third, low-penetrant allele, “deletion of RB exon 4,” showed minimal hyperphosphorylation in vivo but demonstrated detectable E2F1 binding in vitro. In addition, each low-penetrant RB mutant retained the ability to suppress colony growth of RB(−) tumor cells. These findings suggest two categories of mutant, low-penetrant RB alleles. Class 1 alleles correspond to promoter mutations, which are believed to result in reduced or deregulated levels of wild-type RB protein, whereas class 2 alleles result in mutant proteins that retain partial activity. Characterization of the different subtypes of class 2 low-penetrant genes may help to define more precisely functional domains within the RB product required for tumor suppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reported previously that the hepatitis B virus oncoprotein, HBx, can bind to the C terminus of p53 and inhibit several critical p53-mediated cellular processes, including DNA sequence-specific binding, transcriptional transactivation, and apoptosis. Recognizing the importance of p53-mediated apoptosis for maintaining homeostasis and preventing neoplastic transformation, here we further examine the physical interaction between HBx and p53 as well as the functional consequences of this association. In vitro binding studies indicate that the ayw and adr viral subtypes of HBx bind similar amounts of glutathione S-transferase-p53 with the distal C terminus of HBx (from residues 111 to 154) being critical for this interaction. Using a microinjection technique, we show that this same C-terminal region of HBx is necessary for sequestering p53 in the cytoplasm and abrogating p53-mediated apoptosis. The transcriptional transactivation domain of HBx also maps to its C terminus; however, a comparison of the ability of full-length and truncated HBx protein to abrogate p53-induced apoptosis versus transactivate simian virus 40- or human nitric oxide synthase-2 promoter-driven reporter constructs indicates that these two functional properties are distinct and thus may contribute to hepatocarcinogenesis differently. Collectively, our data indicate that the distal C-terminal domain of HBx, independent of its transactivation activity, complexes with p53 in the cytoplasm, partially preventing its nuclear entry and ability to induce apoptosis. These pathobiological effects of HBx may contribute to the early stages of hepatocellular carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarian carcinomas are thought to arise in the ovarian surface epithelium (OSE). Although this tissue forms a simple epithelial covering on the ovarian surface, OSE cells exhibit some mesenchymal characteristics and contain little or no E-cadherin. However, E-cadherin is present in metaplastic OSE cells that resemble the more complex epithelia of the oviduct, endometrium and endocervix, and in primary epithelial ovarian carcinomas. To determine whether E-cadherin was a cause or consequence of OSE metaplasia, we expressed this cell-adhesion molecule in simian virus 40-immortalized OSE cells. In these cells the exogenous E-cadherin, all three catenins, and F-actin localized at sites of cell–cell contact, indicating the formation of functional adherens junctions. Unlike the parent OSE cell line, which had undergone a typical mesenchymal transformation in culture, E-cadherin-expressing cells contained cytokeratins and the tight-junction protein occludin. They also formed cobblestone monolayers in two-dimensional culture and simple epithelia in three-dimensional culture that produced CA125 and shed it into the culture medium. CA125 is a normal epithelial-differentiation product of the oviduct, endometrium, and endocervix, but not of normal OSE. It is also a tumor antigen that is produced by ovarian neoplasms and by metaplastic OSE. Thus, E-cadherin restored some normal characteristics of OSE, such as keratin, and it also induced epithelial-differentiation markers associated with weakly preneoplastic, metaplastic OSE and OSE-derived primary carcinomas. The results suggest an unexpected role for E-cadherin in ovarian neoplastic progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional role of the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in epidermal growth factor (EGF)-induced expression of 12(S)-lipoxygenase gene in human epidermoid carcinoma A431 cells was studied. Coimmunoprecipitation experiments indicated that EGF stimulated interaction between c-Jun and Sp1 in a time-dependent manner. Overexpression of Ha-ras and c-Jun also enhanced the amount of c-Jun binding to Sp1. In addition, the c-Jun dominant negative mutant TAM-67 not only inhibited the coimmunoprecipitated c-Jun binding to Sp1 in a dose-dependent manner in cells overexpressing c-Jun but also reduced promoter activity of the 12(S)-lipoxygenase gene induced by c-Jun overexpression. Treatment of cells with EGF increased the interaction between the Sp1 oligonucleotide and nuclear c-Jun/Sp1 in a time-dependent manner. Furthermore, EGF activated the chimeric promoter consisting of 10 tandem GAL4-binding sites, which replaced the three Sp1-binding sites in the 12(S)lipoxygenase promoter only when coexpressed with GAL4-c-Jun () fusion proteins. These results indicate that the direct interaction between c-Jun and Sp1 induced by EGF cooperatively activated expression of the 12(S)-lipoxygenase gene, and that Sp1 may serve at least in part as a carrier bringing c-Jun to the promoter, thus transactivating the transcriptional activity of 12(S)-lipoxygenase gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transgenic mouse model of metastatic prostate cancer has been developed that is 100% penetrant in multiple pedigrees. Nucleotides −6500 to +34 of the mouse cryptdin-2 gene were used to direct expression of simian virus 40 T antigen to a subset of neuroendocrine cells in all lobes of the FVB/N mouse prostate. Transgene expression is initiated between 7 and 8 weeks of age and leads to development of prostatic intraepithelial neoplasia within a week. Prostatic intraepithelial neoplasia progresses rapidly to local invasion. Metastases to lymph nodes, liver, lung, and bone are common by 6 months. Tumorigenesis is not dependent on androgens. This model indicates that the neuroendocrine cell lineage of the prostate is exquisitely sensitive to transformation and provides insights about the significance of neuroendocrine differentiation in human prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandin E2 receptors (EP) were detected by radioligand binding in nuclear fractions isolated from porcine brain and myometrium. Intracellular localization by immunocytofluorescence revealed perinuclear localization of EPs in porcine cerebral microvascular endothelial cells. Nuclear association of EP1 was also found in fibroblast Swiss 3T3 cells stably overexpressing EP1 and in human embryonic kidney 293 (Epstein–Barr virus-encoded nuclear antigen) cells expressing EP1 fused to green fluorescent protein. High-resolution immunostaining of EP1 revealed their presence in the nuclear envelope of isolated (cultured) endothelial cells and in situ in brain (cortex) endothelial cells and neurons. Stimulation of these nuclear receptors modulate nuclear calcium and gene transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-selectin mediates homing of lymphocytes to lymph nodes (LN). Transgenic mice that express rat insulin promoter regulated simian virus 40 Tag (RIP-Tag) develop large, local cancers that metastasize to liver but not LN. To test whether this lack of LN metastases reflects their absence from the circulation, transgenic mice were produced that express Tag (T), L-selectin (L), and Escherichia coli LacZ (Z), in pancreatic β cells. LTZ mice developed insulinomas that specifically had LN metastases; metastasis was blocked by an anti L-selectin mAb. LacZ+ tumor cells from these LN homed to secondary LN upon transfer. These results suggest that the highly vascularized islet carcinomas are shedding tumor cells into the bloodstream, which is a necessary but insufficient condition for metastasis to occur; L-selectin can facilitate homing of such tumor cells to LN, resulting in metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have generated a chimeric gene transfer vector that combines the simplicity of plasmids with the infectivity and long-term expression of retroviruses. We replaced the env gene of a Moloney murine leukemia virus-derived provirus by a foreign gene, generating a plasmid that upon transfer to tumor cells generates noninfectious retroviral particles carrying the transgene. We added to this plasmid an independent expression cassette comprising a cytomegalovirus promoter, an amphotropic retroviral envelope, and a polyadenylylation signal from simian virus 40. These constructs were designed to minimize the risk of recombination generating replication-competent retroviruses. Their only region of homology is a 157-bp sequence with 53% identity. We show that the sole transfection of this plasmid in various cell lines generates infectious but defective retroviral particles capable of efficiently infecting and expressing the transgene. The formation of infectious particles allows the transgene propagation in vitro. Eight days after transfection in vitro, the proportion of cells expressing the transgene is increased by 10-60 times. There was no evidence of replication-competent retrovirus generation in these experiments. The intratumoral injection of this plasmid, but not of the control vector lacking the env gene, led to foci of transgene-expressing cells, suggesting that the transgene had propagated in situ. Altogether, these "plasmoviruses" combine advantages of viral and non-viral vectors. They should be easy to produce in large quantity as clinical grade materials and should allow efficient and safe in situ targeting of tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proliferation, migration-associated differentiation, and cell death occur continuously and in a spatially well-organized fashion along the crypt-villus axis of the mouse small intestine, making it an attractive system for studying how these processes are regulated and interrelated. A pathway for producing glycoconjugates was engineered in adult FVB/N transgenic mice by expressing a human alpha 1,3/4-fucosyltransferase (alpha 1,3/4-FT; EC 2.4.1.65) along the length of this crypt-villus axis. The alpha 1,3/4-FT can use lacto-N-tetraose or lacto-neo-N-tetraose core chains to generate Lewis (Le) blood group antigens Le(a) or Le(x), respectively, and H type 1 or H type 2 core chains to produce Leb and Le(y). Single- and multilabel immunohistochemical studies revealed that expression of the alpha 1,3/4-FT results in production of Le(a) and Leb antigens in both undifferentiated proliferated crypt cells and in differentiated postmitotic villus-associated epithelial cells. In contrast, Le(x) antigens were restricted to crypt cells. Villus enterocytes can be induced to reenter the cell cycle by expression of simian virus 40 tumor antigen under the control of a promoter that only functions in differentiated members of this lineage. Bitransgenic animals, generated from a cross of FVB/N alpha 1,3/4-FT with FVB/N simian virus 40 tumor antigen mice, expand the range of Le(x) expression to include villus-associated enterocytes that have reentered the cell cycle. Thus, the fucosylations unveil a proliferation-dependent switch in oligosaccharide production, as defined by a monoclonal antibody specific for the Le(x) epitope. These findings show that genetic engineering of oligosaccharide biosynthetic pathways can be used to define markers for entry into, or progression through, the cell cycle and to identify changes in endogenous carbohydrate metabolism that occur when proliferative status is altered in a manner that is not deleterious to the system under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms regulating expression of mouse mammary tumor virus (MMTV)-encoded superantigens from the viral sag gene are largely unknown, due to problems with detection and quantification of these low-abundance proteins. To study the expression and regulation of the MMTV sag gene, we have developed a sensitive and quantitative reporter gene assay based on a recombinant superantigen-human placental alkaline phosphatase fusion protein. High sag-reporter expression in Ba/F3, an early B-lymphoid cell line, depends on enhancers in either of the viral long terminal repeats (LTRs) and is largely independent of promoters in the 5' LTR. The same enhancer region is also required for general expression of MMTV genes from the 5' LTR. The enhancer was mapped to a 548-bp fragment of the MMTV LTR lying within sag and shown to be sufficient to stimulate expression from a heterologous simian virus 40 promoter. No enhancer activity of the MMTV LTR was observed in XC sarcoma cells, which are permissive for MMTV. Our results demonstrate a major role for this enhancer in MMTV gene expression in early B-lymphoid cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great adaptability shown by RNA viruses is a consequence of their high mutation rates. Here we investigate the kinetics of virus fitness gains during repeated transfers of large virus populations in cell culture. Results always show that fitness increases exponentially. Low fitness clones exhibit regular increases observed as biphasic periods of exponential evolutionary improvement, while neutral clones show monophasic kinetics. These results are significant for RNA virus epidemiology, optimal handling of attenuated live virus vaccines, and routine laboratory procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rat cell line REF52 is not permissive for gene amplification. Simian virus 40 tumor (T) antigen converts these cells to a permissive state, as do dominant negative mutants of p53, suggesting that the effect of T antigen is due mainly to its ability to bind to p53. To manipulate permissivity, we introduced a temperature-sensitive mutant of T antigen (tsA58) into REF52 cells and selected for resistance to N-(phosphonacetyl)-L-aspartate (PALA). Most freshly isolated PALA-resistant colonies, each of approximately 200 cells, selected at a permissive temperature, arrested when shifted to a nonpermissive temperature. Growth arrest was stable, with no evidence of apoptosis, as long as T antigen was absent but was reversed when T antigen was restored. In contrast, PALA-resistant clones grown to approximately 10(7) cells at a permissive temperature did not arrest when shifted to a nonpermissive temperature. All PALA-resistant clones examined had amplified carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) genes, present in structures consistent with a mechanism involving bridge-breakage-fusion (BBF) cycles. We propose that p53-mediated growth arrest operates only early during the complex process of gene amplification, when newly formed PALA-resistant cells contain broken DNA, generated in BBF cycles. During propagation under permissive conditions, the broken DNA ends are healed, and, even though the p53-mediated pathway is still intact at a nonpermissive temperature and the cells contain amplified DNA, they are not arrested in the absence of broken DNA. The data support the hypothesis that BBF cycles are an important mechanism of amplification and that the broken DNA generated in each cycle is a key signal that regulates permissivity for gene amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is an abundant, multifunctional serine/threonine-specific phosphatase that stimulates simian virus 40 DNA replication. The question as to whether chromosomal DNA replication also depends on PP2A was addressed by using a cell-free replication system derived from Xenopus laevis eggs. Immunodepletion of PP2A from Xenopus egg extract resulted in strong inhibition of DNA replication. PP2A was required for the initiation of replication but not for the elongation of previously engaged replication forks. Therefore, the initiation of chromosomal DNA replication depends not only on phosphorylation by protein kinases but also on dephosphorylation by PP2A.