155 resultados para replication slippage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD′ and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, we show that DNA polymerase III*, a subassembly of DNA polymerase III holoenzyme lacking the β subunit, is blocked very effectively by the synthetic abasic site in the same DNA substrate. Addition of the β subunit caused a dramatic increase of at least 28-fold in the ability of the polymerase to perform translesion replication, reaching 52% bypass in 5 min. When the ssDNA region in the gapped plasmid was extended from 22 nucleotides to 350 nucleotides, translesion replication still depended on the β subunit, but it was reduced by 80%. DNA sequence analysis of translesion replication products revealed mostly −1 frameshifts. This mutation type is changed to base substitution by the addition of UmuD′, UmuC, and RecA, as demonstrated in a reconstituted SOS translesion replication reaction. These results indicate that the β subunit sliding DNA clamp is the major determinant in the ability of DNA polymerase III holoenzyme to perform unassisted translesion replication and that this unassisted bypass produces primarily frameshifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is an abundant, multifunctional serine/threonine-specific phosphatase that stimulates simian virus 40 DNA replication. The question as to whether chromosomal DNA replication also depends on PP2A was addressed by using a cell-free replication system derived from Xenopus laevis eggs. Immunodepletion of PP2A from Xenopus egg extract resulted in strong inhibition of DNA replication. PP2A was required for the initiation of replication but not for the elongation of previously engaged replication forks. Therefore, the initiation of chromosomal DNA replication depends not only on phosphorylation by protein kinases but also on dephosphorylation by PP2A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcinoma of the cervix is one of the most common malignancies. Papanicolaou (Pap) smear tests have reduced mortality by up to 70%. Nevertheless their interpretation is notoriously difficult with high false-negative rates and frequently fatal consequences. We have addressed this problem by using affinity-purified antibodies against human proteins that regulate DNA replication, namely Cdc6 and Mcm5. These antibodies were applied to sections and smears of normal and diseased uterine cervix by using immunoperoxidase or immunofluorescence to detect abnormal precursor malignant cells. Antibodies against Cdc6 and Mcm5 stain abnormal cells in cervical smears and sections with remarkably high specificity and sensitivity. Proliferation markers Ki-67 and proliferating cell nuclear antigen are much less effective. The majority of abnormal precursor malignant cells are stained in both low-grade and high-grade squamous intraepithelial lesions. Immunostaining of cervical smears can be combined with the conventional Pap stain so that all the morphological information from the conventional method is conserved. Thus antibodies against proteins that regulate DNA replication can reduce the high false-negative rate of the Pap smear test and may facilitate mass automated screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown with a simple mathematical model that if a system exhibits a given form (a spatial structure) and is put in contact with another system of the same type but in a state of spatial disorder, then under certain conditions their mutual interaction as they evolve in time allows replication of form in the disordered system with a controllable degree of faithfulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antigen-induced stimulation of the immune system can generate heterogeneity in CD4+ T cell division rates capable of explaining the temporal patterns seen in the decay of HIV-1 plasma RNA levels during highly active antiretroviral therapy. Posttreatment increases in peripheral CD4+ T cell counts are consistent with a mathematical model in which host cell redistribution between lymph nodes and peripheral blood is a function of viral burden. Model fits to patient data suggest that, although therapy reduces HIV replication below replacement levels, substantial residual replication continues. This residual replication has important consequences for long-term therapy and the evolution of drug resistance and represents a challenge for future treatment strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiation and control of replication of the broad-host-range plasmid RK2 requires two plasmid-encoded elements, the replication origin (oriV) and the initiation protein TrfA. Purified TrfA is largely in the form of a dimer; however, only the monomeric form of the protein can bind specifically to the direct repeats (iterons) at the RK2 origin. The largely dimeric form of wild-type TrfA is inactive in the initiation of replication of RK2 in an in vitro replication system reconstituted from purified components. However, preincubation of the TrfA protein with the ClpX molecular chaperone isolated from Escherichia coli activates the initiator protein for replication in the purified system. We further observed that ClpX, in an ATP-dependent reaction, greatly increases the proportion of TrfA monomers and, therefore, the ability of this protein to bind to iterons localized within RK2 origin. Finally, a copy-up mutant of the TrfA protein which is largely in the monomer form is active in the reconstituted in vitro replication system, and its activity is not affected by ClpX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fission yeast both DNA polymerase alpha (pol α) and delta (pol δ) are required for DNA chromosomal replication. Here we demonstrate that Schizosaccharomyces pombe cdc20+ encodes the catalytic subunit of DNA polymerase epsilon (pol ɛ) and that this enzyme is also required for DNA replication. Following a shift to the restrictive temperature, cdc20 temperature-sensitive mutant cells block at the onset of DNA replication, suggesting that cdc20+ is required early in S phase very near to the initiation step. In the budding yeast Saccharomyces cerevisiae, it has been reported that in addition to its proposed role in chromosomal replication, DNA pol ɛ (encoded by POL2) also functions directly as an S phase checkpoint sensor [Navas, T. A., Zhou, Z. & Elledge, S. J. (1995) Cell 80, 29–39]. We have investigated whether cdc20+ is required for the checkpoint control operating in fission yeast, and our data indicate that pol ɛ does not have a role as a checkpoint sensor coordinating S phase with mitosis. In contrast, germinating spores disrupted for the gene encoding pol α rapidly enter mitosis in the absence of DNA synthesis, suggesting that in the absence of pol α, normal coordination between S phase and mitosis is lost. We propose that the checkpoint signal operating in S phase depends on assembly of the replication initiation complex, and that this signal is generated prior to the elongation stage of DNA synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the widely accepted view that transcription of gid and mioC is required for efficient initiation of cloned oriC, we show that these transcriptions have very little effect on initiation of chromosome replication at wild-type chromosomal oriC. Furthermore, neither gid nor mioC transcription is required in cells deficient in the histone-like proteins Fis or IHF. However, oriC that is sufficiently impaired for initiation by deletion of DnaA box R4 requires transcription of at least one of these genes. We conclude that transcription of mioC and especially gid is needed to activate oriC only under suboptimal conditions. We suggest that either the rifampicin-sensitive step of initiation is some other transcription occurring from promoter(s) within oriC, or the original inference of transcriptional activation derived from the rifampicin experiments is incorrect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initiation of DNA replication in Saccharomyces cerevisiae requires the protein product of the CDC45 gene. We report that although Cdc45p is present at essentially constant levels throughout the cell cycle, it completes its initiation function in late G1, after START and prior to DNA synthesis. Shortly after mitosis, cells prepare for initiation by assembling prereplicative complexes at their replication origins. These complexes are then triggered at the onset of S phase to commence DNA replication. Cells defective for CDC45 are incapable of activating the complexes to initiate DNA replication. In addition, Cdc45p and Cdc7p/Dbf4p, a kinase implicated in the G1/S phase transition, are dependent on one another for function. These data indicate that CDC45 functions in late G1 phase in concert with CDC7/DBF4 to trigger initiation at replication origins after the assembly of the prereplicative complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4–OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of ∼92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (Vernis et al., 1997). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fission yeast Cdc18, a homologue of Cdc6 in budding yeast and metazoans, is periodically expressed during the S phase and required for activation of replication origins. Cdc18 overexpression induces DNA rereplication without mitosis, as does elimination of Cdc2-Cdc13 kinase during G2 phase. These findings suggest that illegitimate activation of origins may be prevented through inhibition of Cdc18 by Cdc2. Consistent with this hypothesis, we report that Cdc18 interacts with Cdc2 in association with Cdc13 and Cig2 B-type cyclins in vivo. Cdc18 is phosphorylated by the associated Cdc2 in vitro. Mutation of a single phosphorylation site, T104A, activates Cdc18 in the rereplication assay. The cdc18-K9 mutation is suppressed by a cig2 mutation, providing genetic evidence that Cdc2-Cig2 kinase inhibits Cdc18. Moreover, constitutive expression of Cig2 prevents rereplication in cells lacking Cdc13. These findings identify Cdc18 as a key target of Cdc2-Cdc13 and Cdc2-Cig2 kinases in the mechanism that limits chromosomal DNA replication to once per cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify cellular functions involved in the early phase of the retroviral life cycle, somatic cell mutants were isolated after selection for resistance to infection. Rat2 fibroblasts were treated with chemical mutagens, and individual virus-resistant clones were recovered after selection for resistance to infection. Two clones were characterized in detail. Both mutant lines were resistant to infection by both ecotropic and amphotropic murine viruses, as well as by human immunodeficiency virus type 1 pseudotypes. One clone showed a strong block to reverse transcription of the retroviral RNA, including formation of the earliest DNA products. The second clone showed normal levels of viral DNA synthesis but did not allow formation of the circular DNAs normally found in the nucleus. Cell fractionation showed that the viral preintegration complex was present in a form that could not be extracted under conditions that readily extracted the complex from wild-type cells. The results suggest that the DNA was trapped in a nonproductive state and excluded from the nucleus of the infected cell. The properties of these two mutant lines suggest that host gene products play important roles both before and after reverse transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cdc6 protein of budding yeast and its homologues in other species play an essential role in the initiation of DNA replication. A cDNA encoding a human homologue of Cdc6 (HsCdc6) has been cloned and expressed as a fusion protein in a soluble and functionally active form. The purified protein bound specifically to ATP and slowly hydrolyzed it, whereas HsCdc6 mutants containing amino acid substitutions in the Walker A or B motifs were defective. The mutant proteins retained the ability to bind HsOrc1 and HsCdc6 but displayed aberrant conformations in the presence of nucleotides. Microinjection of either mutant protein into human cells in G1 inhibited DNA replication, suggesting that ATP binding and hydrolysis by HsCdc6 are essential for DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the isolation and functional analysis of the rfc3+ gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3+ gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3+ is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.