110 resultados para recombinant interleukin 1 receptor blocking agent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the cycling human endometrium, the expression of interstitial collagenase (MMP-1) and of several related matrix metalloproteinases (MMPs) follows the late-secretory fall in sex steroid plasma concentrations and is thought to be a critical step leading to menstruation. The rapid and extensive lysis of interstitial matrix that precedes menstrual shedding requires a strict control of these proteinases. However, the mechanism by which ovarian steroids regulate endometrial MMPs remains unclear. We report here that, in the absence of ovarian steroids, MMP-1 expression in endometrial fibroblasts is markedly stimulated by medium conditioned by endometrial epithelial cells. This stimulation can be prevented by antibodies directed against interleukin 1α (IL-1α) but not against several other cytokines. Ovarian steroids inhibit the release of IL-1α and repress MMP-1 production by IL-1α-stimulated fibroblasts. In short-term cultures of endometrial explants obtained throughout the menstrual cycle, the release of both IL-1α and MMP-1 is essentially limited to the perimenstrual phase. We conclude that epithelium-derived IL-1α is the key paracrine inducer of MMP-1 in endometrial fibroblasts. However, MMP-1 production in the human endometrium is ultimately blocked by ovarian steroids, which act both upstream and downstream of IL-1α, thereby exerting an effective control via a “double-block” mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein translocation into peroxisomes takes place via recognition of a peroxisomal targeting signal present at either the extreme C termini (PTS1) or N termini (PTS2) of matrix proteins. In mammals and yeast, the peroxisomal targeting signal receptor, Pex5p, recognizes the PTS1 consisting of -SKL or variants thereof. Although many plant peroxisomal matrix proteins are transported through the PTS1 pathway, little is known about the PTS1 receptor or any other peroxisome assembly protein from plants. We cloned tobacco (Nicotiana tabacum) cDNAs encoding Pex5p (NtPEX5) based on the protein’s interaction with a PTS1-containing protein in the yeast two-hybrid system. Nucleotide sequence analysis revealed that the tobacco Pex5p contains seven tetratricopeptide repeats and that NtPEX5 shares greater sequence similarity with its homolog from humans than from yeast. Expression of NtPEX5 fusion proteins, consisting of the N-terminal part of yeast Pex5p and the C-terminal region of NtPEX5, in a Saccharomyces cerevisiae pex5 mutant restored protein translocation into peroxisomes. These experiments confirmed the identity of the tobacco protein as a PTS1 receptor and indicated that components of the peroxisomal translocation apparatus are conserved functionally. Two-hybrid assays showed that NtPEX5 interacts with a wide range of PTS1 variants that also interact with the human Pex5p. Interestingly, the C-terminal residues of some of these peptides deviated from the established plant PTS1 consensus sequence. We conclude that there are significant sequence and functional similarities between the plant and human Pex5ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a “leaderless” secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1β out of the cell. Indeed, although most of the IL-1β precursor (proIL-1β) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1β and the endolysosomal hydrolase cathepsin D or for both IL-1β and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1β is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1β secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1β from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1β but deplete the vesicular proIL-1β content, indicating that exocytosis of proIL-1β–containing vesicles is regulated by ATP and osmotic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations in reconstituted systems and transfected cells indicate that G-protein receptor kinases (GRKs) and β-arrestins mediate desensitization and endocytosis of G-protein–coupled receptors. Little is known about receptor regulation in neurons. Therefore, we examined the effects of the neurotransmitter substance P (SP) on desensitization of the neurokinin-1 receptor (NK1-R) and on the subcellular distribution of NK1-R, Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in cultured myenteric neurons. NK1-R was coexpressed with immunoreactive Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in a subpopulation of neurons. SP caused 1) rapid NK1-R–mediated increase in [Ca2+]i, which was transient and desensitized to repeated stimulation; 2) internalization of the NK1-R into early endosomes containing SP; and 3) rapid and transient redistribution of β-arrestin-1 and -2 from the cytosol to the plasma membrane, followed by a striking redistribution of β-arrestin-1 and -2 to endosomes containing the NK1-R and SP. In SP-treated neurons Gαq/11 remained at the plasma membrane, and GRK-2 and -3 remained in centrally located and superficial vesicles. Thus, SP induces desensitization and endocytosis of the NK1-R in neurons that may be mediated by GRK-2 and -3 and β-arrestin-1 and -2. This regulation will determine whether NK1-R–expressing neurons participate in functionally important reflexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania are parasites that survive within macrophages by mechanism(s) not entirely known. Depression of cellular immunity and diminished production of interleukin 1β (IL-1β) and tumor necrosis factor α are potential ways by which the parasite survives within macrophages. We examined the mechanism(s) by which lipophosphoglycan (LPG), a major glycolipid of Leishmania, perturbs cytokine gene expression. LPG treatment of THP-1 monocytes suppressed endotoxin induction of IL-1β steady-state mRNA by greater than 90%, while having no effect on the expression of a control gene. The addition of LPG 2 h before or 2 h after endotoxin challenge significantly suppressed steady-state IL-1β mRNA by 90% and 70%, respectively. LPG also inhibited tumor necrosis factor α and Staphylococcus induction of IL-1β gene expression. The inhibitory effect of LPG is agonist-specific because LPG did not suppress the induction of IL-1β mRNA by phorbol 12-myristate 13-acetate. A unique DNA sequence located within the −310 to −57 nucleotide region of the IL-1β promoter was found to mediate LPG’s inhibitory activity. The requirement for the −310 to −57 promoter gene sequence for LPG’s effect is demonstrated by the abrogation of LPG’s inhibitory activity by truncation or deletion of the −310 to −57 promoter gene sequence. Furthermore, the minimal IL-1β promoter (positions −310 to +15) mediated LPG’s inhibitory activity with dose and kinetic profiles that were similar to LPG’s suppression of steady-state IL-1β mRNA. These findings delineated a promoter gene sequence that responds to LPG to act as a “gene silencer,” a function, to our knowledge, not previously described. LPG’s inhibitory activity for several mediators of inflammation and the persistence of significant inhibitory activity 2 h after endotoxin challenge suggest that LPG has therapeutic potential and may be exploited for therapy of sepsis, acute respiratory distress syndrome, and autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 (PBSF/SDF-1) is a member of the CXC group of chemokines that is initially identified as a bone marrow stromal cell-derived factor and as a pre-B-cell stimulatory factor. Although most chemokines are thought to be inducible inflammatory mediators, PBSF/SDF-1 is essential for perinatal viability, B lymphopoiesis, bone marrow myelopoiesis, and cardiac ventricular septal formation, and it has chemotactic activities on resting lymphocytes and monocytes. In this paper, we have isolated a cDNA that encodes a seven transmembrane-spanning-domain receptor, designated pre-B-cell-derived chemokine receptor (PB-CKR) from a murine pre-B-cell clone, DW34. The deduced amino acid sequence has 90% identity with that of a HUMSTSR/fusin, a human immunodeficiency virus 1 (HIV-1) entry coreceptor. However, the second extracellular region has lower identity (67%) compared with HUMSTSR/fusin. PB-CKR is expressed during embryo genesis and in many organs and T cells of adult mice. Murine PBSF/SDF-1 induced an increase in intracellular free Ca2+ in DW34 cells and PB-CKR-transfected Chinese hamster ovary (CHO) cells, suggesting that PB-CKR is a functional receptor for murine PBSF/SDF-1. Murine PBSF/SDF-1 also induced Ca2+ influx in fusin-transfected CHO cells. On the other hand, considering previous results that HIV-1 does not enter murine T cells that expressed human CD4, PB-CKR may not support HIV-1 infection. Thus, PB-CKR will be an important tool for functional mapping of HIV-1 entry coreceptor fusin and for understanding the function of PBSF/SDF-1 further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin (IL)-18, formerly called interferon γ (IFN-γ)-inducing factor, is biologically and structurally related to IL-1β. A comparison of gene expression, synthesis, and processing of IL-18 with that of IL-1β was made in human peripheral blood mononuclear cells (PBMCs) and in human whole blood. Similar to IL-1β, the precursor for IL-18 requires processing by caspase 1. In PBMCs, mature but not precursor IL-18 induces IFN-γ; in whole human blood stimulated with endotoxin, inhibition of caspase 1 reduces IFN-γ production by an IL-1β-independent mechanism. Unlike the precursor for IL-1β, precursor for IL-18 was expressed constitutively in PBMCs and in fresh whole blood from healthy human donors. Western blotting of endotoxin-stimulated PBMCs revealed processed IL-1β in the supernatants via an caspase 1-dependent pathway. However, in the same supernatants, only unprocessed precursor IL-18 was found. Unexpectedly, precursor IL-18 was found in freshly obtained PBMCs and constitutive IL-18 gene expression was present in whole blood of healthy donors, whereas constitutive IL-1β gene expression is absent. Similar to human PBMCs, mouse spleen cells also constitutively contained the preformed precursor for IL-18 and expressed steady-state IL-18 mRNA, but there was no IL-1β protein and no spontaneous gene expression for IL-1β in these same preparations. We conclude that although IL-18 and IL-1β are likely members of the same family, constitutive gene expression, synthesis, and processing are different for the two cytokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substance P plays an important role in the transmission of pain-related information in the dorsal horn of the spinal cord. Recent immunocytochemical studies have shown a mismatch between the distribution of substance P and its receptor in the superficial laminae of the dorsal horn. Because such a mismatch was not observed by using classical radioligand binding studies, we decided to investigate further the issue of the relationship between substance P and its receptor by using an antibody raised against a portion of the carboxyl terminal of the neurokinin 1 receptor and a bispecific monoclonal antibodies against substance P and horseradish peroxidase. Light microscopy revealed a good correlation between the distributions of substance P and the neurokinin 1 receptor, both being localized with highest densities in lamina I and outer lamina II of the spinal dorsal horn. An ultrastructural double-labeling study, combining preembedding immunogold with enzyme-based immunocytochemistry, showed that most neurokinin 1 receptor immunoreactive dendrites were apposed by substance P containing boutons. A detailed quantitative analysis revealed that neurokinin 1 receptor immunoreactive dendrites received more appositions and synapses from substance P immunoreactive terminals than those not expressing the neurokinin 1 receptor. Such preferential innervation by substance P occurred in all superficial dorsal horn laminae even though neurokinin 1 receptor immunoreactive dendrites were a minority of the total number of dendritic profiles in the above laminae. These results suggest that, contrary to the belief that neuropeptides act in a diffuse manner at a considerable distance from their sites of release, substance P should act on profiles expressing the neurokinin 1 receptor at a short distance from its site of release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in serotonin (5-hydroxytriptamine, 5-HT), norepinephrine, and γ-aminobutyric acid have been linked to the pathophysiology of anxiety and depression, and medications that modulate these neurotransmitters are widely used to treat mood disorders. Recently, the neuropeptide substance P (SP) and its receptor, the neurokinin 1 receptor (NK1R), have been proposed as possible targets for new antidepressant and anxiolytic therapies. However, animal and human studies have so far failed to provide a clear consensus on the role of SP in the modulation of emotional states. Here we show that both genetic disruption and acute pharmacological blockade of the NK1R in mice result in a marked reduction of anxiety and stress-related responses. These behavioral changes are paralleled by an increase in the firing rate of 5-HT neurons in the dorsal raphe nucleus, a major source of serotonergic input to the forebrain. NK1R disruption also results in a selective desensitization of 5-HT1A inhibitory autoreceptors, which resembles the effect of sustained antidepressant treatment. Together these results indicate that the SP system powerfully modulates anxiety and suggest that this effect is at least in part mediated by changes in the 5-HT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two classes of human G protein-coupled receptors, cysteinyl leukotriene 1 (CysLT1) and CysLT2 receptors, recently have been characterized and cloned. Because the CysLT1 receptor blockers are effective in treating human bronchial asthma and the mouse is often used to model human diseases, we isolated the mouse CysLT1 receptor from a mouse lung cDNA library and found two isoforms. A short isoform cDNA containing two exons encodes a polypeptide of 339 aa with 87.3% amino acid identity to the human CysLT1 receptor. A long isoform has two additional exons and an in-frame upstream start codon resulting in a 13-aa extension at the N terminus. Northern blot analysis revealed that the mouse CysLT1 receptor mRNA is expressed in lung and skin; and reverse transcription–PCR showed wide expression of the long isoform with the strongest presence in lung and skin. The gene for the mouse CysLT1 receptor was mapped to band XD. Leukotriene (LT) D4 induced intracellular calcium mobilization in Chinese hamster ovary cells stably expressing either isoform of the mouse CysLT1 receptor cDNA. This agonist effect of LTD4 was fully inhibited by the CysLT1 receptor antagonist, MK-571. Microsomal membranes from each transformant showed a single class of binding sites for [3H]LTD4; and the binding was blocked by unlabeled LTs, with the rank order of affinities being LTD4 >> LTE4 = LTC4 >> LTB4. Thus, the dominant mouse isoform with the N-terminal amino acid extension encoded by an additional exon has the same ligand response profile as the spliced form and the human receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutant I1A cells, lacking IL-1 receptor-associated kinase (IRAK) mRNA and protein, have been used to study the involvement of IRAK in NFκB and c-Jun N-terminal kinase (JNK) activation. A series of IRAK deletion constructs were expressed in I1A cells, which were then tested for their ability to respond to IL-1. Both the N-terminal death domain and the C-terminal region of IRAK are required for IL-1-induced NFκB and JNK activation, whereas the N-proximal undetermined domain is required for the activation of NFκB but not JNK. The phosphorylation and ubiquitination of IRAK deletion mutants correlate tightly with their ability to activate NFκB in response to IL-1, but IRAK can mediate IL-1-induced JNK activation without being phosphorylated. These studies reveal that the IL-1-induced signaling pathways leading to NFκB and JNK activation diverge either at IRAK or at a point nearer to the receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Down-regulation of cell surface growth factor receptors plays a key role in the tight control of cellular responses. Recent reports suggest that the ubiquitin system, in addition to participating in degradation by the proteasome of cytosolic and nuclear proteins, might also be involved in the down-regulation of various membrane receptors. We have previously characterized a signal in the cytosolic part of the interleukin 2 receptor β chain (IL2Rβ) responsible for its targeting to late endosomes/lysosomes. In this report, the role of the ubiquitin/proteasome system on the intracellular fate of IL2Rβ was investigated. Inactivation of the cellular ubiquitination machinery in ts20 cells, which express a thermolabile ubiquitin-activating enzyme E1, leads to a significant decrease in the degradation rate of IL2Rβ, with little effect on its internalization. In addition, we show that a fraction of IL2Rβ can be monoubiquitinated. Furthermore, mutation of the lysine residues of the cytosolic region of a chimeric receptor carrying the IL2Rβ targeting signal resulted in a decreased degradation rate. When cells expressing IL2Rβ were treated either by proteasome or lysosome inhibitors, a significant decrease in receptor degradation was observed. Our data show that ubiquitination is required for the sorting of IL2Rβ toward degradation. They also indicate that impairment of proteasome function might more generally affect intracellular routing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor alpha on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1 beta, or tumor necrosis factor alpha augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.