38 resultados para randomly amplified polymorphic DNA
Resumo:
The rat cell line REF52 is not permissive for gene amplification. Simian virus 40 tumor (T) antigen converts these cells to a permissive state, as do dominant negative mutants of p53, suggesting that the effect of T antigen is due mainly to its ability to bind to p53. To manipulate permissivity, we introduced a temperature-sensitive mutant of T antigen (tsA58) into REF52 cells and selected for resistance to N-(phosphonacetyl)-L-aspartate (PALA). Most freshly isolated PALA-resistant colonies, each of approximately 200 cells, selected at a permissive temperature, arrested when shifted to a nonpermissive temperature. Growth arrest was stable, with no evidence of apoptosis, as long as T antigen was absent but was reversed when T antigen was restored. In contrast, PALA-resistant clones grown to approximately 10(7) cells at a permissive temperature did not arrest when shifted to a nonpermissive temperature. All PALA-resistant clones examined had amplified carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) genes, present in structures consistent with a mechanism involving bridge-breakage-fusion (BBF) cycles. We propose that p53-mediated growth arrest operates only early during the complex process of gene amplification, when newly formed PALA-resistant cells contain broken DNA, generated in BBF cycles. During propagation under permissive conditions, the broken DNA ends are healed, and, even though the p53-mediated pathway is still intact at a nonpermissive temperature and the cells contain amplified DNA, they are not arrested in the absence of broken DNA. The data support the hypothesis that BBF cycles are an important mechanism of amplification and that the broken DNA generated in each cycle is a key signal that regulates permissivity for gene amplification.
Resumo:
Although polyomavirus JC (JCV) is the proven pathogen of progressive multifocal leukoencephalopathy, the fatal demyelinating disease, this virus is ubiquitous as a usually harmless symbiote among human beings. JCV propagates in the adult kidney and excretes its progeny in urine, from which JCV DNA can readily be recovered. The main mode of transmission of JCV is from parents to children through long cohabitation. In this study, we collected a substantial number of urine samples from native inhabitants of 34 countries in Europe, Africa, and Asia. A 610-bp segment of JCV DNA was amplified from each urine sample, and its DNA sequence was determined. A worldwide phylogenetic tree subsequently constructed revealed the presence of nine subtypes including minor ones. Five subtypes (EU, Af2, B1, SC, and CY) occupied rather large territories that overlapped with each other at their boundaries. The entire Europe, northern Africa, and western Asia were the domain of EU, whereas the domain of Af2 included nearly all of Africa and southwestern Asia all the way to the northeastern edge of India. Partially overlapping domains in Asia were occupied by subtypes B1, SC, and CY. Of particular interest was the recovery of JCV subtypes in a pocket or pockets that were separated by great geographic distances from the main domains of those subtypes. Certain of these pockets can readily be explained by recent migrations of human populations carrying these subtypes. Overall, it appears that JCV genotyping promises to reveal previously unknown human migration routes: ancient as well as recent.
Resumo:
In an attempt to quantify the rates of protein sequence divergence in Drosophila, we have devised a screen to differentiate between slow and fast evolving genes. We find that over one-third of randomly drawn cDNAs from a Drosophila melanogaster library do not cross-hybridize with Drosophila virilis DNA, indicating that they evolve with a very high rate. To determine the evolutionary characteristics of such protein sequences, we sequenced their homologs from a more closely related species (Drosophila yakuba). The amino acid substitution rates among these cDNAs are among the fastest known and several are only about 2-fold lower than the corresponding values for silent substitutions. An analysis of within-species polymorphisms for one of these sequences reveals an exceptionally high number of polymorphic amino acid positions, indicating that the protein is not under strong negative selection. We conclude that the Drosophila genome harbors a substantial proportion of genes with a very high divergence rate.
Resumo:
A homogeneous DNA diagnostic assay based on template-directed primer extension detected by fluorescence resonance energy transfer, named template-directed dye-terminator incorporation (TDI) assay, has been developed for mutation detection and high throughput genome analysis. Here, we report the successful application of the TDI assay to detect mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the human leukocyte antigen H (HLA-H) gene, and the receptor tyrosin kinase (RET) protooncogene that are associated with cystic fibrosis, hemochromatosis, and multiple endocrine neoplasia, type 2, respectively. Starting with total human DNA, the samples are amplified by the PCR followed by enzymatic degradation of excess primers and deoxyribonucleoside triphosphates before the primer extension reaction is performed. All these standardized steps are performed in the same tube, and the fluorescence changes are monitored in real time, making it a useful clinical DNA diagnostic method.
Resumo:
The Schizosaccharomyces pombe sod2 gene, located near the telomere on the long arm of chromosome I, encodes a Na+ (or Li+)/H+ antiporter. Amplification of sod2 has previously been shown to confer resistance to LiCl. We analyzed 20 independent LiCl-resistant strains and found that the only observed mechanism of resistance is amplification of sod2. The amplicons are linear, extrachromosomal elements either 225 or 180 kb long, containing both sod2 and telomere sequences. To determine whether proximity to a telomere is necessary for sod2 amplification, a strain was constructed in which the gene was moved to the middle of the same chromosomal arm. Selection of LiCl-resistant strains in this genetic background also yielded amplifications of sod2, but in this case the amplified DNA was exclusively chromosomal. Thus, proximity to a telomere is not a prerequisite for gene amplification in S. pombe but does affect the mechanism. Relative to wild-type cells, mutants with defects in the DNA damage aspect of the rad checkpoint control pathway had an increased frequency of sod2 amplification, whereas mutants defective in the S-phase completion checkpoint did not. Two models for generating the amplified DNA are presented.
Resumo:
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.
Resumo:
DNA polymerases contain active sites that are structurally superimposable and highly conserved in sequence. To assess the significance of this preservation and to determine the mutational burden that active sites can tolerate, we randomly mutated a stretch of 13 amino acids within the polymerase catalytic site (motif A) of Thermus aquaticus DNA polymerase I. After selection, by using genetic complementation, we obtained a library of approximately 8,000 active mutant DNA polymerases, of which 350 were sequenced and analyzed. This is the largest collection of physiologically active polymerase mutants. We find that all residues of motif A, except one (Asp-610), are mutable while preserving wild-type activity. A wide variety of amino acid substitutions were obtained at sites that are evolutionarily maintained, and conservative substitutions predominate at regions that stabilize tertiary structures. Several mutants exhibit unique properties, including DNA polymerase activity higher than the wild-type enzyme or the ability to incorporate ribonucleotide analogs. Bacteria dependent on these mutated polymerases for survival are fit to replicate repetitively. The high mutability of the polymerase active site in vivo and the ability to evolve altered enzymes may be required for survival in environments that demand increased mutagenesis. The inherent substitutability of the polymerase active site must be addressed relative to the constancy of nucleotide sequence found in nature.
Resumo:
Transpositions of mtDNA sequences to the nuclear genome have been documented in a wide variety of individual taxa, but little is known about their taxonomic frequency or patterns of variation. We provide evidence of nuclear sequences homologous to the mtDNA control region in seven species of diving ducks (tribe Aythyini). Phylogenetic analysis places each nuclear sequence as a close relative of the mtDNA haplotypes of the specie(s) in which it occurs, indicating that they derive from six independent transposition events, all occurring within the last ≈1.5 million years. Relative-rate tests and comparison of intraspecific variation in nuclear and mtDNA sequences confirm the expectation of a greatly reduced rate of evolution in the nuclear copies. By representing mtDNA haplotypes from ancestral populations, nuclear insertions may be valuable in some phylogenetic analyses, but they also confound the accurate determination of mtDNA sequences. In particular, our data suggest that the presumably nonfunctional but more slowly evolving nuclear sequences often will not be identifiable by changes incompatible with function and may be preferentially amplified by PCR primers based on mtDNA sequences from related taxa.
Resumo:
We describe a method for cloning nucleic acid molecules onto the surfaces of 5-μm microbeads rather than in biological hosts. A unique tag sequence is attached to each molecule, and the tagged library is amplified. Unique tagging of the molecules is achieved by sampling a small fraction (1%) of a very large repertoire of tag sequences. The resulting library is hybridized to microbeads that each carry ≈106 strands complementary to one of the tags. About 105 copies of each molecule are collected on each microbead. Because such clones are segregated on microbeads, they can be operated on simultaneously and then assayed separately. To demonstrate the utility of this approach, we show how to label and extract microbeads bearing clones differentially expressed between two libraries by using a fluorescence-activated cell sorter (FACS). Because no prior information about the cloned molecules is required, this process is obviously useful where sequence databases are incomplete or nonexistent. More importantly, the process also permits the isolation of clones that are expressed only in given tissues or that are differentially expressed between normal and diseased states. Such clones then may be spotted on much more cost-effective, tissue- or disease-directed, low-density planar microarrays.
Resumo:
An approach was developed for the quantification of subtle gains and losses of genomic DNA. The approach relies on a process called molecular combing. Molecular combing consists of the extension and alignment of purified molecules of genomic DNA on a glass coverslip. It has the advantage that a large number of genomes can be combed per coverslip, which allows for a statistically adequate number of measurements to be made on the combed DNA. Consequently, a high-resolution approach to mapping and quantifying genomic alterations is possible. The approach consists of applying fluorescence hybridization to the combed DNA by using probes to identify the amplified region. Measurements then are made on the linear hybridization signals to ascertain the region's exact size. The reliability of the approach first was tested for low copy number amplifications by determining the copy number of chromosome 21 in a normal and trisomy 21 cell line. It then was tested for high copy number amplifications by quantifying the copy number of an oncogene amplified in the tumor cell line GTL-16. These results demonstrate that a wide range of amplifications can be accurately and reliably quantified. The sensitivity and resolution of the approach likewise was assessed by determining the copy number of a single allele (160 kb) alteration.
Resumo:
Transposable elements are ubiquitous in plant genomes, where they frequently comprise the majority of genomic DNA. The maize genome, which is believed to be structurally representative of large plant genomes, contains single genes or small gene islands interspersed with much longer blocks of retrotransposons. Given this organization, it would be desirable to identify molecular markers preferentially located in genic regions. In this report, the features of a newly described family of miniature inverted repeat transposable elements (MITEs) (called Heartbreaker), including high copy number and polymorphism, stability, and preference for genic regions, have been exploited in the development of a class of molecular markers for maize. To this end, a modification of the AFLP procedure called transposon display was used to generate and display hundreds of genomic fragments anchored in Hbr elements. An average of 52 markers were amplified for each primer combination tested. In all, 213 polymorphic fragments were reliably scored and mapped in 100 recombinant inbred lines derived from a cross between the maize inbreds B73 × Mo17. In this mapping population, Hbr markers are distributed evenly across the 10 maize chromosomes. This procedure should be of general use in the development of markers for other MITE families in maize and in other plant and animal species where MITEs have been identified.
Resumo:
DNA breaks occur during many processes in mammalian cells, including recombination, repair, mutagenesis and apoptosis. Here we report a simple and rapid method for assaying DNA breaks and identifying DNA breaksites. Breaksites are first tagged and amplified by ligation-mediated PCR (LM-PCR), using nested PCR primers to increase the specificity and sensitivity of amplification. Breaksites are then mapped by batch sequencing LM-PCR products. This allows easy identification of multiple breaksites per reaction without tedious fractionation of PCR products by gel electrophoresis or cloning. Breaksite batch mapping requires little starting material and can be used to identify either single- or double-strand breaks.
Resumo:
ALFRED (the ALelle FREquency Database) is designed to store and disseminate frequencies of alleles at human polymorphic sites for multiple populations, primarily for the population genetics and molecular anthropology communities. Currently ALFRED has information on over 180 polymorphic sites for more than 70 populations. Since our initial release of the database we have focussed on increasing the quantity and quality of data, making reciprocal links between ALFRED and other related databases, and providing useful tools to make the data more comprehensible to the end user. ALFRED is accessible from the Kidd Lab home page (http://info.med.yale.edu/genetics/kkidd/) or from ALFRED directly (http://alfred.med.yale.edu/alfred/index.asp).
Resumo:
We describe a method to screen pools of DNA from multiple transposon lines for insertions in many genes simultaneously. We use thermal asymmetric interlaced–PCR, a hemispecific PCR amplification protocol that combines nested, insertion-specific primers with degenerate primers, to amplify DNA flanking the transposons. In reconstruction experiments with previously characterized Arabidopsis lines carrying insertions of the maize Dissociation (Ds) transposon, we show that fluorescently labeled, transposon-flanking fragments overlapping ORFs hybridize to cognate expressed sequence tags (ESTs) on a DNA microarray. We further show that insertions can be detected in DNA pools from as many as 100 plants representing different transposon lines and that all of the tested, transposon-disrupted genes whose flanking fragments can be amplified individually also can be detected when amplified from the pool. The ability of a transposon-flanking fragment to hybridize declines rapidly with decreasing homology to the spotted DNA fragment, so that only ESTs with >90% homology to the transposon-disrupted gene exhibit significant cross-hybridization. Because thermal asymmetric interlaced–PCR fragments tend to be short, use of the present method favors recovery of insertions in and near genes. We apply the technique to screening pools of new Ds lines using cDNA microarrays containing ESTs for ≈1,000 stress-induced and -repressed Arabidopsis genes.
Resumo:
Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.