125 resultados para polo like kinase 1
Resumo:
The Bcl-2 protein blocks programmed cell death (apoptosis) through an unknown mechanism. Previously we identified a Bcl-2 interacting protein BAG-1 that enhances the anti-apoptotic effects of Bcl-2. Like BAG-1, the serine/threonine protein kinase Raf-1 also can functionally cooperate with Bcl-2 in suppressing apoptosis. Here we show that Raf-1 and BAG-1 specifically interact in vitro and in yeast two-hybrid assays. Raf-1 and BAG-1 can also be coimmunoprecipitated from mammalian cells and from insect cells infected with recombinant baculoviruses encoding these proteins. Furthermore, bacterially-produced BAG-1 protein can increase the kinase activity of Raf-1 in vitro. BAG-1 also activates this mammalian kinase in yeast. These observations suggest that the Bcl-2 binding protein BAG-1 joins Ras and 14-3-3 proteins as potential activators of the kinase Raf-1.
Resumo:
The c-Jun N-terminal kinase (JNK), or stress-activated protein kinase plays a crucial role in cellular responses stimulated by environmental stress and proinflammatory cytokines. However, the mechanisms that lead to the activation of the JNK pathway have not been elucidated. We have isolated a cDNA encoding a novel protein kinase that has significant sequence similarities to human germinal center kinase (GCK) and human hematopoietic progenitor kinase 1. The novel GCK-like kinase (GLK) has a nucleotide sequence that encodes an ORF of 885 amino acids with 11 kinase subdomains. Endogenous GLK could be activated by UV radiation and proinflammatory cytokine tumor necrosis factor α. When transiently expressed in 293 cells, GLK specifically activated the JNK, but not the p42/44MAPK/extracellular signal-regulated kinase or p38 kinase signaling pathways. Interestingly, deletion of amino acids 353–835 in the putative C-terminal regulatory region, or mutation of Lys-35 in the putative ATP-binding domain, markedly reduced the ability of GLK to activate JNK. This result indicates that both kinase activity and the C-terminal region of GLK are required for maximal activation of JNK. Furthermore, GLK-induced JNK activation could be inhibited by a dominant-negative mutant of mitogen-activated protein kinase kinase kinase 1 (MEKK1) or mitogen-activated protein kinase kinase 4/SAPK/ERK kinase 1 (SEK1), suggesting that GLK may function upstream of MEKK1 in the JNK signaling pathway.
Resumo:
Many viruses have evolved mechanisms for evading the host immune system by synthesizing proteins that interfere with the normal immune response. The poxviruses are among the most accomplished at deceiving their hosts’ immune systems. The nucleotide sequence of the genome of the human cutaneous poxvirus, molluscum contagiosum virus (MCV) type 1, was recently reported to contain a region that resembles a human chemokine. We have cloned and expressed the chemokine-like genes from MCV type 1 and the closely related MCV type 2 to determine a potential role for these proteins in the viral life cycle. In monocyte chemotaxis assays, the viral proteins have no chemotactic activity but both viral proteins block the chemotactic response to the human chemokine, macrophage inflammatory protein (MIP)-1α. Like MIP-1α, both viral proteins also inhibit the growth of human hematopoietic progenitor cells, but the viral proteins are more potent in this activity than the human chemokine. These viral chemokines antagonize the chemotactic activity of human chemokines and have an inhibitory effect on human hematopoietic progenitor cells. We hypothesize that the inhibition of chemotaxis is an immune evasion function of these proteins during molluscum contagiosum virus infection. The significance of hematopoietic progenitor cell inhibition in viral pathogenesis is uncertain.
Resumo:
Impaired insulin secretion is a characteristic of non-insulin-dependent diabetes mellitus (NIDDM). One possible therapeutic agent for NIDDM is the insulinotropic hormone glucagon-like peptide 1 (GLP-1). GLP-1 stimulates insulin secretion through several mechanisms including activation of protein kinase A (PKA). We now demonstrate that the subcellular targeting of PKA through association with A-kinase-anchoring proteins (AKAPs) facilitates GLP-1-mediated insulin secretion. Disruption of PKA anchoring by the introduction of anchoring inhibitor peptides or expression of soluble AKAP fragments blocks GLP-1 action in primary islets and cAMP-responsive insulin secretion in clonal beta cells (RINm5F). Displacement of PKA also prevented cAMP-mediated elevation of intracellular calcium suggesting that localized PKA phosphorylation events augment calcium flux.
Resumo:
Polo kinases execute multiple roles during cell division. The fission yeast polo related kinase Plo1 is required to assemble the mitotic spindle, the prophase actin ring that predicts the site for cytokinesis and for septation after the completion of mitosis (Ohkura et al., 1995; Bahler et al., 1998). We show that Plo1 associates with the mitotic but not interphase spindle pole body (SPB). SPB association of Plo1 is the earliest fission yeast mitotic event recorded to date. SPB association is strong from mitotic commitment to early anaphase B, after which the Plo1 signal becomes very weak and finally disappears upon spindle breakdown. SPB association of Plo1 requires mitosis-promoting factor (MPF) activity, whereas its disassociation requires the activity of the anaphase-promoting complex. The stf1.1 mutation bypasses the usual requirement for the MPF activator Cdc25 (Hudson et al., 1990). Significantly, Plo1 associates inappropriately with the interphase SPB of stf1.1 cells. These data are consistent with the emerging theme from many systems that polo kinases participate in the regulation of MPF to determine the timing of commitment to mitosis and may indicate that pole association is a key aspect of Plo1 function. Plo1 does not associate with the SPB when septation is inappropriately driven by deregulation of the Spg1 pathway and remains SPB associated if septation occurs in the presence of a spindle. Thus, neither Plo1 recruitment to nor its departure from the SPB are required for septation; however, overexpression of plo1+ activates the Spg1 pathway and causes transient Cdc7 recruitment to the SPB and multiple rounds of septation.
Resumo:
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Resumo:
Human deoxyribonucleoside kinases are required for the pharmacological activity of several clinically important anticancer and antiviral nucleoside analogs. Human deoxycytidine kinase and thymidine kinase 1 are described as cytosolic enzymes in the literature, whereas human deoxyguanosine kinase and thymidine kinase 2 are believed to be located in the mitochondria. We expressed the four human deoxyribonucleoside kinases as fusion proteins with the green fluorescent protein to study their intracellular locations in vivo. Our data showed that the human deoxycytidine kinase is located in the cell nucleus and the human deoxyguanosine kinase is located in the mitochondria. The fusion proteins between green fluorescent protein and thymidine kinases 1 and 2 were both predominantly located in the cytosol. Site-directed mutagenesis of a putative nuclear targeting signal, identified in the primary structure of deoxycytidine kinase, completely abolished nuclear import of the protein. Reconstitution of a deoxycytidine kinase-deficient cell line with the wild-type nuclear or the mutant cytosolic enzymes both restored sensitivity toward anticancer nucleoside analogs. This paper reports that a deoxyribonucleoside kinase is located in the cell nucleus and we discuss the implications for deoxyribonucleotide synthesis and phosphorylation of nucleoside analogs.
Resumo:
The human endogenous retrovirus K (HERV-K) family of endogenous retroviruses consists of ≈50 proviral copies per haploid human genome. Herein, the HERV-Ks are shown to encode a sequence-specific nuclear RNA export factor, termed K-Rev, that is functionally analogous to the HIV-1 Rev protein. Like HIV-1 Rev, K-Rev binds to both the Crm1 nuclear export factor and to a cis-acting viral RNA target to activate nuclear export of unspliced RNAs. Surprisingly, this HERV-K RNA sequence, which is encoded within the HERV-K long terminal repeat, is also recognized by HIV-1 Rev. These data provide surprising evidence for an evolutionary link between HIV-1 and a group of endogenous retroviruses that first entered the human genome ≈30 million years ago.
Resumo:
Smad proteins are critical intracellular mediators of signaling by growth and differentiation factors of the transforming growth factor β superfamily. We have isolated a member of the Smad family, Smad8, from a rat brain cDNA library and biochemically and functionally characterized its ability to transduce signals from serine kinase receptors. In Xenopus embryo, Smad8 is able to transcriptionally activate a subset of mesoderm target genes similar to those induced by the receptor serine kinase, activin receptor-like kinase (ALK)-2. Smad8 can be specifically phosphorylated by a constitutively active ALK-2 but not the related receptor serine kinase, ALK-4. In response to signaling from ALK-2, Smad8 associates with a common regulatory molecule, Smad4, and this association leads to a synergistic effect on gene transcription. Furthermore, Smad8 is able to rescue the expression of mesoderm genes blocked by truncated ALK-2 in the embryo. These results indicate that Smad8 can function as a downstream signaling mediator of ALK-2.
Resumo:
Neuronal Ca2+ channels are inhibited by a variety of transmitter receptors coupled to Go-type GTP-binding proteins. Go has been postulated to work via a direct interaction between an activated G protein subunit and the Ca2+ channel complex. Here we show that the inhibition of sensory neuron N-type Ca2+ channels produced by γ-aminobutyric acid involves a novel, rapidly activating tyrosine kinase signaling pathway that is mediated by Gαo and a src-like kinase. In contrast to other recently described G protein-coupled tyrosine kinase pathways, the Gαo-mediated modulation requires neither protein kinase C nor intracellular Ca2+. The results suggest that this pathway mediates rapid receptor-G protein signaling in the nervous system and support the existence of a previously unrecognized form of crosstalk between G protein and tyrosine kinase pathways.
Resumo:
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.
Resumo:
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) induces proliferation and sustains the viability of the mouse interleukin-3-dependent cell line BA/F3 expressing the hGM-CSF receptor. Analysis of the antiapoptosis activity of GM-CSF receptor βc mutants showed that box1 but not the C-terminal region containing tyrosine residues is essential for GM-CSF-dependent antiapoptotic activity. Because βc mutants, which activate Janus kinase 2 but neither signal transducer and activator of transcription 5 nor the MAPK cascade sustain antiapoptosis activity, involvement of Janus kinase 2, excluding the above molecules, in antiapoptosis activity seems likely. GM-CSF activates phosphoinositide-3-OH kinase as well as Akt, and activation of both was suppressed by addition of wortmannin. Interestingly, wortmannin did not affect GM-CSF-dependent antiapoptosis, thus indicating that the phosphoinositide-3-OH kinase pathway is not essential for cell surivival. Analysis using the tyrosine kinase inhibitor genistein and a MAPK/extracellular signal-regulated kinase (ERK) kinase 1 inhibitor, PD98059, indicates that activation of either the genistein-sensitive signaling pathway or the PD98059-sensitive signaling pathway from βc may be sufficient to suppress apoptosis. Wild-type and a βc mutant lacking tyrosine residues can induce expression of c-myc and bcl-xL genes; however, drug sensitivities for activation of these genes differ from those for antiapoptosis activity of GM-CSF, which means that these gene products may be involved yet are inadequate to promote cell survival.
Resumo:
Serine/threonine kinase Akt/PKB is a downstream effector molecule of phosphoinositide 3-kinase and is thought to mediate many biological actions toward anti-apoptotic responses. We found that Akt formed a complex with a 90-kDa heat-shock protein (Hsp90) in vivo. By constructing deletion mutants, we identified that amino acid residues 229–309 of Akt were involved in the binding to Hsp90 and amino acid residues 327–340 of Hsp90β were involved in the binding to Akt. Inhibition of Akt-Hsp90 binding led to the dephosphorylation and inactivation of Akt, which increased sensitivity of the cells to apoptosis-inducing stimulus. The dephosphorylation of Akt was caused by an increase in protein phosphatase 2A (PP2A)-mediated dephosphorylation and not by a decrease in 3-phosphoinositide-dependent protein kinase-1-mediated phosphorylation. These results indicate that Hsp90 plays an important role in maintaining Akt kinase activity by preventing PP2A-mediated dephosphorylation.
Resumo:
Ca2+ sensitization of smooth muscle contraction involves inhibition of myosin light chain phosphatase (SMPP-1M) and enhanced myosin light chain phosphorylation. Inhibition of SMPP-1M is modulated through phosphorylation of the myosin targeting subunit (MYPT1) by either Rho-associated kinase (ROK) or an unknown SMPP-1M-associated kinase. Activated ROK is predominantly membrane-associated and its putative substrate, SMPP-1M, is mainly myofibrillar-associated. This raises a conundrum about the mechanism of interaction between these enzymes. We present ZIP-like kinase, identified by “mixed-peptide” Edman sequencing after affinity purification, as the previously unidentified SMPP-1M-associated kinase. ZIP-like kinase was shown to associate with MYPT1 and phosphorylate the inhibitory site in intact smooth muscle. Phosphorylation of ZIP-like kinase was associated with an increase in kinase activity during carbachol stimulation, suggesting that the enzyme may be a terminal member of a Ca2+ sensitizing kinase cascade.
Resumo:
Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype.