64 resultados para plant functional types


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P{GAL4} enhancer trap lines reveals unexpected richness for such an apparently simple tissue. Using numerical analysis, it was possible formally to reconcile apparently similar or complementary expression domains and thus to define at least five genetically defined domains and multiple cell types. Remarkably, the positions of domain boundaries and the numbers of both principal and secondary (“stellate”) cell types within each domain are reproducible to near single-cell precision between individual animals. Domains of physiological function were also mapped using transport or expression assays. Invariably, they respect the boundaries defined by enhancer activity. These genetic domains can also be visualized in vivo, both in transgenic and wild-type flies, providing an “identified cell” system for epithelial physiology. Building upon recent advances in Drosophila Malpighian tubule physiology, the present study confirms this tissue as a singular model for integrative physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design of hydroxyproline (Hyp)-rich glycoproteins (HRGPs) offers an approach for the structural and functional analysis of these wall components, which are broadly implicated in plant growth and development. HRGPs consist of multiple small repetitive “glycomodules” extensively O-glycosylated through the Hyp residues. The patterns of Hyp-O-glycosylation are putatively coded by the primary sequence as described by the Hyp contiguity hypothesis, which predicts contiguous Hyp residues to be attachment sites of small arabinooligosaccharides (1–5 Ara residues/Hyp); while clustered, noncontiguous Hyp residues are sites of arabinogalactan polysaccharide attachment. As a test, we designed two simple HRGPs as fusion proteins with green fluorescent protein. The first was a repetitive Ser-Hyp motif that encoded only clustered noncontiguous Hyp residues, predicted polysaccharide addition sites. The resulting glycoprotein had arabinogalactan polysaccharide O-linked to all Hyp residues. The second construct, based on the consensus sequence of a gum arabic HRGP, contained both arabinogalactan and arabinooligosaccharide addition sites and, as predicted, gave a product that contained both saccharide types. These results identify an O-glycosylation code of plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological activity of the transcription factor NF-κB is mainly controlled by the IκB proteins IκBα and IκBβ, which restrict NF-κB in the cytoplasm and enter the nucleus where they terminate NF-κB-dependent transcription. In this paper we describe the cloning and functional characterization of mouse IκBɛ. Mouse IκBɛ contains 6 ankyrin repeats required for its interaction with the Rel proteins and is expressed in different cell types where we found that it is up-regulated by NF-κB inducers, as is the case for IκBα and human IκBɛ. IκBɛ functions as a bona fide IκB protein by restricting Rel proteins in the cytoplasm and inhibiting their in vitro DNA binding activity. Surprisingly, IκBɛ did not inhibit transcription of genes regulated by the p50/p65 heterodimer efficiently, such as the human interferon-β gene. However, IκBɛ was a strong inhibitor of interleukin-8 expression, a gene known to be regulated by p65 homodimers. In addition, IκBɛ appears to function predominantly in the cytoplasm to sequester p65 homodimers, in contrast with the other two members of the family, IκBα and IκBβ, which also function in the nucleus to terminate NF-κB-dependent transcriptional activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deletions of all or part of chromosome 10 are the most common genetic alterations in high-grade gliomas. The PTEN gene (also called MMAC1 and TEP1) maps to chromosome region 10q23 and has been implicated as a target of alteration in gliomas and also in other cancers such as those of the breast, prostate, and kidney. Here we sought to provide a functional test of its candidacy as a growth suppressor in glioma cells. We used a combination of Northern blot analysis, protein truncation assays, and sequence analysis to determine the types and frequency of PTEN mutations in glioma cell lines so that we could define appropriate recipients to assess the growth suppressive function of PTEN by gene transfer. Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN. The ectopic expression of PTEN alleles, which carried mutations found in primary tumors and have been shown or are expected to inactivate its phosphatase activity, caused little growth suppression. These data strongly suggest that PTEN is a protein phosphatase that exhibits functional and specific growth-suppressing activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yersiniae, causative agents of plague and gastrointestinal diseases, secrete and translocate Yop effector proteins into the cytosol of macrophages, leading to disruption of host defense mechanisms. It is shown in this report that Yersinia enterocolitica induces apoptosis in macrophages and that this effect depends on YopP. Functional secretion and translocation mechanisms are required for YopP to act, strongly suggesting that this protein exerts its effect intracellularly, after translocation into the macrophages. YopP shows a high level of sequence similarity with AvrRxv, an avirulence protein from Xanthomonas campestris, a plant pathogen that induces programmed cell death in plant cells. This indicates possible similarities between the strategies used by pathogenic bacteria to elicit programmed cell death in both plant and animal hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a novel plant transformation technique, termed “agrolistic,” that combines the advantages of the Agrobacterium transformation system with the high efficiency of biolistic DNA delivery. Agrolistic transformation allows integration of the gene of interest without undesired vector sequence. The virulence genes virD1 and virD2 from Agrobacterium tumefaciens that are required in bacteria for excision of T-strands from the tumor-inducing plasmid were placed under the control of the CaMV35S promoter and codelivered with a target plasmid containing border sequences flanking the gene of interest. Transient expression assays in tobacco and in maize cells indicated that vir gene products caused strand-specific nicking in planta at the right border sequence, similar to VirD1/VirD2-catalyzed T-strand excision observed in Agrobacterium. Agrolistically transformed tobacco calli were obtained after codelivery of virD1 and virD2 genes together with a selectable marker flanked by border sequences. Some inserts exhibited right junctions with plant DNA that corresponded precisely to the sequence expected for T-DNA (portion of the tumor-inducing plasmid that is transferred to plant cells) insertion events. We designate these as “agrolistic” inserts, as distinguished from “biolistic” inserts. Both types of inserts were found in some transformed lines. The frequency of agrolistic inserts was 20% that of biolistic inserts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By examining the front of virus invasion in immature pea embryos infected with pea seed-borne mosaic virus (PSbMV), the selective control of different host genes has been observed. From our observations, the early responses to PSbMV replication can be grouped into three classes, inhibited host gene expression, induced host gene expression, and no effect on a normal host function. The expression of two heat-inducible genes encoding HSP70 and polyubiquitin was induced coordinately with the onset of virus replication and the down-regulation of two other genes encoding lipoxygenase and heat shock cognate protein. The down-regulation was part of a general suppression of host gene expression that may be achieved through the degradation of host transcripts. We discuss the possibilities of whether the induction of HSP70 and polyubiquitin genes represents a requirement for the respective protein products by the virus or is merely a consequence of the depletion of other host transcripts. The former is feasible, as the induction of both genes does result in increased HSP70 and ubiquitin accumulation. This also indicates that, in contrast to some animal virus infections, there is not a general inhibition of translation of host mRNAs following PSbMV infection. This selective control of host gene expression was observed in all cell types of the embryo and identifies mechanisms of cellular disruption that could act as triggers for symptom expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) generated in response to wounding can be detected at wound sites and in distal leaf veins within 1 hr after wounding. The response is systemic and maximizes at about 4–6 hr in both wounded and unwounded leaves, and then declines. The timing of the response corresponds with an increase in wound-inducible polygalacturonase (PG) mRNA and enzyme activity previously reported, suggesting that oligogalacturonic acid (OGA) fragments produced by PG are triggering the H2O2 response. Systemin, OGA, chitosan, and methyl jasmonate (MJ) all induce the accumulation of H2O2 in leaves. Tomato plants transformed with an antisense prosystemin gene produce neither PG activity or H2O2 in leaves in response to wounding, implicating systemin as a primary wound signal. The antisense plants do produce both PG activity and H2O2 when supplied with systemin, OGA, chitosan, or MJ. A mutant tomato line compromised in the octadecanoid pathway does not exhibit PG activity or H2O2 in response to wounding, systemin, OGA, or chitosan, but does respond to MJ, indicating that the generation of H2O2 requires a functional octadecanoid signaling pathway. Among 18 plant species from six families that were assayed for wound-inducible PG activity and H2O2 generation, 14 species exhibited both wound-inducible PG activity and the generation of H2O2. Four species, all from the Fabaceae family, exhibited little or no wound-inducible PG activity and did not generate H2O2. The time course of wound-inducible PG activity and H2O2 in Arabidopsis thaliana leaves was similar to that found in tomato. The cumulative data suggest that systemic wound signals that induce PG activity and H2O2 are widespread in the plant kingdom and that the response may be associated with the defense of plants against both herbivores and pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most eukaryotic cells, mitochondria use the respiratory chain to produce a proton gradient, which is then harnessed for the synthesis of ATP. Recently, mitochondrial roles in regulation of apoptosis have been discovered in many cell types. Eosinophils (Eos) die by apoptosis, but the presence and function of mitochondria in Eos are unknown. This study found that Eos contain mitochondria in small numbers, as shown by labeling with membrane potential-sensitive dyes and in situ PCR for a mitochondrial gene. Eos generate mitochondrial membrane potential from hydrolysis of ATP rather than from respiration, as shown by mitochondrial respiratory inhibitors and mitochondrial uncouplers. The mitochondria provide insignificant respiration but can induce apoptosis, as shown by using the mitochondrial F1F0-ATPase inhibitor oligomycin and translocation of cytochrome c. Thus during differentiation of Eos, although respiration is lost, the other central role of mitochondria, the induction of apoptosis, is retained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TIGRFAMs is a collection of protein families featuring curated multiple sequence alignments, hidden Markov models and associated information designed to support the automated functional identification of proteins by sequence homology. We introduce the term ‘equivalog’ to describe members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families where possible, and otherwise into protein families with other hierarchically defined homology types. TIGRFAMs currently contains over 800 protein families, available for searching or downloading at www.tigr.org/TIGRFAMs. Classification by equivalog family, where achievable, complements classification by orthology, superfamily, domain or motif. It provides the information best suited for automatic assignment of specific functions to proteins from large-scale genome sequencing projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 24 nucleotides comprising the carbohydrate-recognition domain of Maackia amurensis hemagglutinin (MAH) cDNA were randomly mutated. The mutant lectins were expressed as glutathione-S-transferase fusion proteins in Escherichia coli and 16 clones were randomly chosen. Although all of 16 recombinant lectins reacted strongly with anti-MAH polyclonal antibody, the carbohydrate-recognition domain of each was unique. As shown by agglutination studies, each mutant MAH lectin was able to bind to erythrocytes from one or more of five animal species in very distinct patterns. Thus, novel plant lectin libraries can be used to discriminate in a highly specific manner among a variety of cell types. This technology may prove to be very useful in a number of different applications requiring a high level of specificity in cell identification.