25 resultados para pipe lines
Resumo:
Retinoid dysregulation may be an important factor in the etiology of schizophrenia. This hypothesis is supported by three independent lines of evidence that triangulate on retinoid involvement in schizophrenia: (i) congenital anomalies similar to those caused by retinoid dysfunction are found in schizophrenics and their relatives; (ii) those loci that have been suggestively linked to schizophrenia are also the loci of the genes of the retinoid cascade (convergent loci); and (iii) the transcriptional activation of the dopamine D2 receptor and numerous schizophrenia candidate genes is regulated by retinoic acid. These findings suggest a close causal relationship between retinoids and the underlying pathophysiological defects in schizophrenia. This leads to specific strategies for linkage analyses in schizophrenia. In view of the heterodimeric nature of the retinoid nuclear receptor transcription factors, e.g., retinoid X receptor β at chromosome 6p21.3 and retinoic acid receptor β at 3p24.3, two-locus linkage models incorporating genes of the retinoid cascade and their heterodimeric partners, e.g., peroxisome proliferator-activated receptor α at chromosome 22q12-q13 or nuclear-related receptor 1 at chromosome 2q22-q23, are proposed. New treatment modalities using retinoid analogs to alter the downstream expression of the dopamine receptors and other genes that are targets of retinoid regulation, and that are thought to be involved in schizophrenia, are suggested.
Resumo:
We have developed an efficient reverse-genetics protocol that uses expedient pooling and hybridization strategies to identify individual transfer-DNA insertion lines from a collection of 6000 independently transformed lines in as few as 36 polymerase chain reactions. We have used this protocol to systematically isolate Arabidopsis lines containing insertional mutations in individual cytochrome P450 genes. In higher plants P450 genes encode enzymes that perform an exceptionally wide range of functions, including the biosynthesis of primary metabolites necessary for normal growth and development, the biosynthesis of secondary products, and the catabolism of xenobiotics. Despite their importance, progress in assigning enzymatic function to individual P450 gene products has been slow. Here we report the isolation of the first 12 such lines, including one (CYP83B1-1) that displays a runt phenotype (small plants with hooked leaves), and three insertions in abundantly expressed genes. The DNAs used in this study are publicly available and can be used to systematically isolate mutants in Arabidopsis.
Resumo:
To investigate correlations between phenotypic adaptation to water limitation and drought-induced gene expression, we have studied a model system consisting of a drought-tolerant line (R1) and a drought-sensitive line (S1) of sunflowers (Helianthus annuus L.) subjected to progressive drought. R1 tolerance is characterized by the maintenance of shoot cellular turgor. Drought-induced genes (HaElip1, HaDhn1, and HaDhn2) were previously identified in the tolerant line. The accumulation of the corresponding transcripts was compared as a function of soil and leaf water status in R1 and S1 plants during progressive drought. In leaves of R1 plants the accumulation of HaDhn1 and HaDhn2 transcripts, but not HaElip1 transcripts, was correlated with the drought-adaptive response. Drought-induced abscisic acid (ABA) concentration was not associated with the varietal difference in drought tolerance. Stomata of both lines displayed similar sensitivity to ABA. ABA-induced accumulation of HaDhn2 transcripts was higher in the tolerant than in the sensitive genotype. HaDhn1 transcripts were similarly accumulated in the tolerant and in the sensitive plants in response to ABA, suggesting that additional factors involved in drought regulation of HaDhn1 expression might exist in tolerant plants.
Resumo:
Cross-contamination between cell lines is a longstanding and frequent cause of scientific misrepresentation. Estimates from national testing services indicate that up to 36% of cell lines are of a different origin or species to that claimed. To test a standard method of cell line authentication, 253 human cell lines from banks and research institutes worldwide were analyzed by short tandem repeat profiling. The short tandem repeat profile is a simple numerical code that is reproducible between laboratories, is inexpensive, and can provide an international reference standard for every cell line. If DNA profiling of cell lines is accepted and demanded internationally, scientific misrepresentation because of cross-contamination can be largely eliminated.
Resumo:
Stable mammalian cell lines harboring a synthetic bovine opsin gene have been derived from the suspension-adapted HEK293 cell line. The opsin gene is under the control of the immediate-early cytomegalovirus promoter/enhancer in an expression vector that also contains a selectable marker (Neo) governed by a relatively weak promoter. The cell lines expressing the opsin gene at high levels are selected by growth in the presence of high concentrations of the antibiotic geneticin. Under the conditions used for cell growth in suspension, opsin is produced at saturated culture levels of more than 2 mg/liter. After reconstitution with 11-cis-retinal, rhodopsin is purified to homogeneity in a single step by immunoaffinity column chromatography. Rhodopsin thus prepared (> 90% recovery at concentrations of up to 15 microM) is indistinguishable from rhodopsin purified from bovine rod outer segments by the following criteria: (i) UV/Vis absorption spectra in the dark and after photobleaching and the rate of metarhodopsin II decay, (ii) initial rates of transducin activation, and (iii) the rate of phosphorylation by rhodopsin kinase. Although mammalian cell opsin migrates slower than rod outer segment opsin on SDS/polyacrylamide gels, presumably due to a different N-glycosylation pattern, their mobilities after deglycosylation are identical. This method has enabled the preparation of several site-specific mutants of bovine opsin in comparable amounts.
Resumo:
We have previously shown that the G protein of vesicular stomatitis virus (VSV-G) can be incorporated into the virions of retroviruses. Since expression of VSV-G is toxic to most mammalian cells, development of stable VSV-G packaging cell lines requires inducible VSV-G expression. We have modified the tetracycline-inducible system by fusing the ligand binding domain of the estrogen receptor to the carboxy terminus of a tetracycline-regulated transactivator. Using this system, we show that VSV-G expression is tetracycline-dependent and can be modulated by beta-estradiol. Stable packaging cell lines can readily be established and high-titer pseudotyped retroviral vectors can be generated upon induction of VSV-G expression.
Resumo:
To isolate and characterize effector molecules of the transforming growth factor beta (TGFbeta) signaling pathway we have used a genetic approach involving the generation of stable recessive mutants, defective in their TGFbeta signaling, which can subsequently be functionally complemented to clone the affected genes. We have generated a cell line derived from a hypoxanthine-guanine phosphoribosyltransferase negative (HPRT-) HT1080 clone that contains the selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) linked to a TGFbeta-responsive promoter. This cell line proliferates or dies in the appropriate selection medium in response to TGFbeta. We have isolated three distinct TGFbeta-unresponsive mutants following chemical mutagenesis. Somatic cell hybrids between pairs of individual TGFbeta-unresponsive clones reveal that each is in a distinct complementation group. Each mutant clone retains all three TGFbeta receptors yet fails to induce a TGFbeta-inducible luciferase reporter construct or TGFbeta-mediated plasminogen activator inhibitor-1 (PAI-1) expression. Two of the three have an attenuated TGFbeta-induced fibronectin response, whereas in the other mutant the fibronectin response is intact. These TGFbeta-unresponsive cells should allow selection and identification of signaling molecules through functional complementation.
Resumo:
A major question in central nervous system development, including the neuroretina, is whether migrating cells express cues to find their way and settle at specific locations. We have transplanted quail neuroretinal cell lines QNR/D, a putative amacrine or ganglion cell, and QNR/K2, a putative Müller cell into chicken embryo eyes. Implanted QNR/D cells migrate only to the retinal ganglion and amacrine cell layers and project neurites in the plane of retina; in contrast, QNR/K2 cells migrate through the ganglion and amacrine layers, locate in the inner nuclear layer, and project processes across the retina. These data show that QNR/D and QNR/K2 cell lines represent distinct neural cell types, suggesting that migrating neural cells express distinct address cues. Furthermore, our results raise the possibility that immortalized cell lines can be used for replacement of specific cell types and for the transport of genes to given locations in neuroretina.
Resumo:
Adenovirus (Ad) vectors have been extensively used to deliver recombinant genes to a great variety of cell types in vitro and in vivo. Ad-based vectors are available that replace the Ad early region 1 (E1) with recombinant foreign genes. The resultant E1-deleted vectors can then be propagated on 293 cells, a human embryonal kidney cell line that constitutively expresses the E1 genes. Unfortunately, infection of cells and tissues in vivo results in low-level expression of Ad early and late proteins (despite the absence of E1 activity) resulting in immune recognition of virally infected cells. The infected cells are subsequently eliminated, resulting in only a transient expression of foreign genes in vivo. We hypothesize that a second-generation Ad vector with a deletion of viral genes necessary for Ad genome replication should block viral DNA replication and decrease viral protein production, resulting in a diminished immune response and extended duration of foreign gene expression in vivo. As a first step toward the generation of such a modified vector, we report the construction of cell lines that not only express the E1 genes but also constitutively express the Ad serotype 2 140-kDa DNA polymerase protein, one of three virally encoded proteins essential for Ad genome replication. The Ad polymerase-expressing cell lines support the replication and growth of H5ts36, an Ad with a temperature-sensitive mutation of the Ad polymerase protein. These packaging cell lines can be used to prepare Ad vectors deleted for the E1 and polymerase functions, which should facilitate development of viral vectors for gene therapy of human diseases.
Resumo:
Bombesin (BN) acts as an autocrine mitogen in various human cancers. Several pseudononapeptide BN-(6-14) analogs with a reduced peptide bond between positions 13 and 14 have been shown to suppress the mitogenic activity of BN or gastrin-releasing peptide (GRP) when assessed by radioreceptor or proliferation assays and may have significant clinical applications. The search for potent and safe BN antagonists requires the evaluation of a large series of analogs in radioreceptor and proliferation assays. In this paper, we report that the ability of BN analogs to inhibit BN-induced calcium transients in Swiss 3T3 cells shows a high correlation with their inhibitory potency as evaluated by classical proliferation tests. The assay of calcium transients allows a rapid characterization of new BN analogs (in terms of minutes rather than days) and can be adapted as a labor and cost-effective screening step in the selection of potentially relevant BN antagonists for further characterization in cell proliferation systems. We also observed that results from the assay of calcium transients in Swiss 3T3 cells can be correlated with the results of the proliferative response in HT-29 cells, a cell line that does not seem to use the same early transmembrane ionic signal system. This result suggests that the calcium pathway is not mandatory for triggering cell division by the BN receptor.