30 resultados para p53 72C>G polymorphism
Resumo:
Several cases have been described in the literature where genetic polymorphism appears to be shared between a pair of species. Here we examine the distribution of times to random loss of shared polymorphism in the context of the neutral Wright–Fisher model. Order statistics are used to obtain the distribution of times to loss of a shared polymorphism based on Kimura’s solution to the diffusion approximation of the Wright–Fisher model. In a single species, the expected absorption time for a neutral allele having an initial allele frequency of ½ is 2.77 N generations. If two species initially share a polymorphism, that shared polymorphism is lost as soon as either of two species undergoes fixation. The loss of a shared polymorphism thus occurs sooner than loss of polymorphism in a single species and has an expected time of 1.7 N generations. Molecular sequences of genes with shared polymorphism may be characterized by the count of the number of sites that segregate in both species for the same nucleotides (or amino acids). The distribution of the expected numbers of these shared polymorphic sites also is obtained. Shared polymorphism appears to be more likely at genetic loci that have an unusually large number of segregating alleles, and the neutral coalescent proves to be very useful in determining the probability of shared allelic lineages expected by chance. These results are related to examples of shared polymorphism in the literature.
Resumo:
p53 is a multifunctional tumor suppressor protein involved in the negative control of cell growth. Mutations in p53 cause alterations in cellular phenotype, including immortalization, neoplastic transformation, and resistance to DNA-damaging drugs. To help dissect distinct functions of p53, a set of genetic suppressor elements (GSEs) capable of inducing different p53-related phenotypes in rodent embryo fibroblasts was isolated from a retroviral library of random rat p53 cDNA fragments. All the GSEs were 100-300 nucleotides long and were in the sense orientation. They fell into four classes, corresponding to the transactivator (class I), DNA-binding (class II), and C-terminal (class III) domains of the protein and the 3'-untranslated region of the mRNA (class IV). GSEs in all four classes promoted immortalization of primary cells, but only members of classes I and III cooperated with activated ras to transform cells, and only members of class III conferred resistance to etoposide and strongly inhibited transcriptional transactivation by p53. These observations suggest that processes related to control of senescence, response to DNA damage, and transformation involve different functions of the p53 protein and furthermore indicate a regulatory role for the 3'-untranslated region of p53 mRNA.
Resumo:
The tumor suppressor p53 contributes to maintaining genome stability by inducing a cell cycle arrest or apoptosis in response to conditions that generate DNA damage. Nuclear injection of linearized plasmid DNA, circular DNA with a large gap, or single-stranded circular phagemid is sufficient to induce a p53-dependent arrest. Supercoiled and nicked plasmid DNA, and circular DNA with a small gap were ineffective. Titration experiments indicate that the arrest mechanism in normal human fibroblasts can be activated by very few double strand breaks, and only one may be sufficient. Polymerase chain reaction assays showed that end-joining activity is low in serum-arrested human fibroblasts, and that higher joining activity occurs as cells proceed through G1 or into S phase. We propose that the exquisite sensitivity of the p53-dependent G1 arrest is partly due to inefficient repair of certain types of DNA damage in early G1.
Resumo:
We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death.
Resumo:
beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.
Resumo:
Proliferating-cell nuclear antigen (PCNA) is a DNA damage-inducible protein that performs an essential function in DNA replication and repair as an auxiliary factor for DNA polymerases delta and epsilon. Examination of the human PCNA promoter DNA sequence revealed a site with homology to the consensus DNA sequence bound by p53. PCNA promoter fragments with this site intact bound p53 in vitro and were transcriptionally activated by wild-type p53 in transient expression assays in SAOS-2 cells. The resident p53-binding site could be functionally substituted by a previously described p53-binding site from the ribosomal gene cluster. A plasmid expressing a mutated version of p53 derived from a patient with Li-Fraumeni syndrome failed to activate the PCNA promoter in the cotransfection assay. In different cell types, activation of the PCNA promoter by the p53-binding sequence correlated with the status of p53. Activation of the PCNA promoter by wild-type p53 depends upon the level of p53 expression. This concentration dependence and cell type specificity reconciles the observations presented here with prior results indicating that wild-type p53 represses the PCNA promoter. These findings provide a mechanism whereby p53 modulates activation of PCNA expression as a cellular response to DNA damage.
Resumo:
High levels of the p53 protein are immunohistochemically detectable in a majority of human nonmelanoma skin cancers and UVB-induced murine skin tumors. These increased protein levels are often associated with mutations in the conserved domains of the p53 gene. To investigate the timing of the p53 alterations in the process of UVB carcinogenesis, we used a well defined murine model (SKH:HR1 hairless mice) in which the time that tumors appear is predictable from the UVB exposures. The mice were subjected to a series of daily UVB exposures, either for 17 days or for 30 days, which would cause skin tumors to appear around 80 or 30 weeks, respectively. In the epidermis of these mice, we detected clusters of cells showing a strong immunostaining of the p53 protein, as measured with the CM-5 polyclonal antiserum. This cannot be explained by transient accumulation of the normal p53 protein as a physiological response to UVB-induced DNA damage. In single exposure experiments the observed transient CM-5 immunoreactivity lasted for only 3 days and was not clustered, whereas these clusters were still detectable as long as 56 days after 17 days of UVB exposure. In addition, approximately 70% of these patches reacted with the mutant-specific monoclonal antibody PAb240, whereas transiently induced p53-positive cells did not. In line with indicative human data, these experimental results in the hairless mouse model unambiguously demonstrate that constitutive p53 alterations are causally related to chronic UVB exposure and that they are a very early event in the induction of skin cancer by UVB radiation.
Resumo:
CD19 receptor is expressed at high levels on human B-lineage lymphoid cells and is physically associated with the Src protooncogene family protein-tyrosine kinase Lyn. Recent studies indicate that the membrane-associated CD19-Lyn receptor-enzyme complex plays a pivotal role for survival and clonogenicity of immature B-cell precursors from acute lymphoblastic leukemia patients, but its significance for mature B-lineage lymphoid cells (e.g., B-lineage lymphoma cells) is unknown. CD19-associated Lyn kinase can be selectively targeted and inhibited with B43-Gen, a CD19 receptor-specific immunoconjugate containing the naturally occurring protein-tyrosine kinase inhibitor genistein (Gen). We now present experimental evidence that targeting the membrane-associated CD19-Lyn complex in vitro with B43-Gen triggers rapid apoptotic cell death in highly radiation-resistant p53-Bax- Ramos-BT B-lineage lymphoma cells expressing high levels of Bcl-2 protein without affecting the Bcl-2 expression level. The therapeutic potential of this membrane-directed apoptosis induction strategy was examined in a scid mouse xenograft model of radiation-resistant high-grade human B-lineage lymphoma. Remarkably, in vivo treatment of scid mice challenged with an invariably fatal number of Ramos-BT cells with B43-Gen at a dose level < 1/10 the maximum tolerated dose resulted in 70% long-term event-free survival. Taken together, these results provide unprecedented evidence that the membrane-associated anti-apoptotic CD19-Lyn complex may be at least as important as Bcl-2/Bax ratio for survival of lymphoma cells.
Resumo:
Recent structural studies of the minimal core DNA-binding domain of p53 (p53DBD) complexed to a single consensus pentamer sequence and of the isolated p53 tetramerization domain have provided valuable insights into their functions, but many questions about their interacting roles and synergism remain unanswered. To better understand these relationships, we have examined the binding of the p53DBD to two biologically important full-response elements (the WAF1 and ribosomal gene cluster sites) by using DNA circularization and analytical ultracentrifugation. We show that the p53DBD binds DNA strongly and cooperatively with p53DBD to DNA binding stoichiometries of 4:1. For the WAF1 element, the mean apparent Kd is (8.3 +/- 1.4) x 10(-8) M, and no intermediate species of lower stoichiometries can be detected. We show further that complex formation induces an axial bend of at least 60 degrees in both response elements. These results, taken collectively, demonstrate that p53DBD possesses the ability to direct the formation of a tight nucleoprotein complex having the same 4:1 DNA-binding stoichiometry as wild-type p53 which is accompanied by a substantial conformational change in the response-element DNA. This suggests that the p53DBD may play a role in the tetramerization function of p53. A possible role in this regard is proposed.
Resumo:
Increased expression of wild-type p53 in response to DNA damage arrests cells late in the G1 stage of the cell cycle by stimulating the synthesis of inhibitors of cyclin-dependent kinases, such as p21/WAF1. To study the effects of p53 without the complication of DNA damage, we used tetracycline to regulate its expression in MDAH041 human fibroblasts that lack endogenous p53. When p53 is expressed at a level comparable to that induced by DNA damage in other cells, most MDAH041 cells arrested in G1, but a significant fraction also arrested in G2/M. Cells released from a mimosine block early in S phase stopped predominantly in G2/M in the presence of p53, confirming that p53 can mediate arrest at this stage, as well as in G1. In these cells, there was appreciable induction of p21/WAF1. MDAH041 cells arrested by tetracycline-regulated p53 for as long as 20 days resumed growth when the p53 level was lowered, in striking contrast to the irreversible arrest mediated by DNA damage. Therefore, irreversible arrest must involve processes other than or in addition to the interaction of p53-induced p21/WAF1 with G1 and G2 cyclin-dependent kinases.
Resumo:
If deprived of wild-type p53 function, the body loses a guardian that protects against cancer. Restoration of p53 function has, therefore, been proposed as a means of counteracting oncogenesis. This concept of therapy requires prior knowledge with regard to proper balance of p53 function in a given target tissue. We have addressed this problem by targeting expression of the wild-type human p53 gene to the lens, a tissue entirely composed of epithelial cells that differentiate into elongated fiber cells. Transgenic mice expressing wild-type human p53 develop microphthalmia as a result of a defect in fiber formation that sets in shortly after birth. We see apoptotic cells that fail to undergo proper differentiation. In an effort to directly link the observed lens phenotype to the activity of the wild-type human p53 transgene, we also generated mice expressing a mutant human p53 allele that lacks wild-type function. A normal lens phenotype is restored in double transgenic animals that carry both wild-type and mutant human p53 alleles. Our study highlights the difficulties that can arise if p53 levels are improperly balanced in a differentiating tissue.
Resumo:
In this paper, a reverse-transcriptase PCR-based protocol suitable for efficient expression analysis of multigene families is presented. The method combines restriction fragment length polymorphism (RFLP) technology with a gene family-specific version of mRNA differential display and hence is called "RFLP-coupled domain-directed differential display. "With this method, expression of all members of a multigene family at many different developmental stages, in diverse tissues and even in different organisms, can be displayed on one gel. Moreover, bands of interest, representing gene family members, are directly accessible to sequence analysis, without the need for subcloning. The method thus enables a detailed, high-resolution expression analysis of known gene family members as well as the identification and characterization of new ones. Here the technique was used to analyze differential expression of MADS-box genes in male and female inflorescences of maize (Zea mays ssp. mays). Six different MADS-box genes could be identified, being either specifically expressed in the female sex or preferentially expressed in male or female inflorescences, respectively. Other possible applications of the method are discussed.
Resumo:
Neuroblastoma (NB), a tumor arising from the sympathetic nervous system, is one of the most common malignancies in childhood. Several recent reports on the p53 genotype found virtually exclusive wild-type status in primary tumors, and it was postulated that p53 plays no role in the development of NB. Here, however, we report that the vast majority of undifferentiated NBs exhibit abnormal cytoplasmic sequestration of wild-type p53. This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor. Thirty of 31 cases (96%) of undifferentiated NB showed elevated levels of wild-type p53 in the cytoplasm of all tumor cells concomittant with a lack of nuclear staining. p53 immunoprecipitation from tumor tissues showed a 4.5- to 8-fold increase over normal protein levels. All of 10 tumors analyzed harbored wild-type p53 by direct sequencing of full-length cDNA and Southern blot. In addition, no MDM-2 gene amplification was seen in all 11 tumors analyzed. In contrast, no p53 abnormality was detected in 14 differentiated ganglioneuroblastomas and 1 benign ganglioneuroma. We conclude that loss of p53 function seems to play a major role in the tumorigenesis of undifferentiated NB. This tumor might abrogate the transactivating function of p53 by inhibiting its access to the nucleus, rather than by gene mutation. Importantly, our results suggest that (i) this could be a general mechanism for p53 inactivation not limited to breast cancer (where we first described it) and that (ii) it is found in a tumor previously not thought to be affected by p53 alteration.
Resumo:
The rat cell line REF52 is not permissive for gene amplification. Simian virus 40 tumor (T) antigen converts these cells to a permissive state, as do dominant negative mutants of p53, suggesting that the effect of T antigen is due mainly to its ability to bind to p53. To manipulate permissivity, we introduced a temperature-sensitive mutant of T antigen (tsA58) into REF52 cells and selected for resistance to N-(phosphonacetyl)-L-aspartate (PALA). Most freshly isolated PALA-resistant colonies, each of approximately 200 cells, selected at a permissive temperature, arrested when shifted to a nonpermissive temperature. Growth arrest was stable, with no evidence of apoptosis, as long as T antigen was absent but was reversed when T antigen was restored. In contrast, PALA-resistant clones grown to approximately 10(7) cells at a permissive temperature did not arrest when shifted to a nonpermissive temperature. All PALA-resistant clones examined had amplified carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) genes, present in structures consistent with a mechanism involving bridge-breakage-fusion (BBF) cycles. We propose that p53-mediated growth arrest operates only early during the complex process of gene amplification, when newly formed PALA-resistant cells contain broken DNA, generated in BBF cycles. During propagation under permissive conditions, the broken DNA ends are healed, and, even though the p53-mediated pathway is still intact at a nonpermissive temperature and the cells contain amplified DNA, they are not arrested in the absence of broken DNA. The data support the hypothesis that BBF cycles are an important mechanism of amplification and that the broken DNA generated in each cycle is a key signal that regulates permissivity for gene amplification.
Resumo:
The E6 protein of the high-risk human papillomaviruses inactivates the tumor suppressor protein p53 by stimulating its ubiquitinylation and subsequent degradation. Ubiquitinylation is a multistep process involving a ubiquitin-activating enzyme, one of many distinct ubiquitin-conjugating enzymes, and in certain cases, a ubiquitin ligase. In human papillomavirus-infected cells, E6 and the E6-associated protein are thought to act as a ubiquitin-protein ligase in the ubiquitinylation of p53. Here we describe the cloning of a human ubiquitin-conjugating enzyme that specifically ubiquitinylates E6-associated protein. Furthermore, we define the biochemical pathway of p53 ubiquitinylation and demonstrate that in vivo inhibition of various components in the pathway leads to an inhibition of E6-stimulated p53 degradation.