20 resultados para naphtalen acetic acid
Resumo:
The role of the apical shoot as a source of inhibitors preventing fruit growth in the absence of a stimulus (e.g. pollination or application of gibberellic acid) has been investigated in pea (Pisum sativum L.). Plant decapitation stimulated parthenocarpic growth, even in derooted plants, and this effect was counteracted by the application of indole acetic acid (IAA) or abscisic acid (ABA) in agar blocks to the severed stump. The treatment of unpollinated ovaries with gibberellic acid blocked the effect of IAA or ABA applied to the stump. [3H]IAA and [3H]ABA applied to the stump were transported basipetally, and [3H]ABA but not [3H]IAA was also detected in unpollinated ovaries. The concentration of ABA in unpollinated ovaries increased significantly in the absence of a promotive stimulus. The application of IAA to the stump enhanced by 2- to 5-fold the concentration of ABA in the inhibited ovary, whereas the inhibition of IAA transport from the apical shoot by triiodobenzoic acid decreased the ovary content of ABA (to approximately one-half). Triiodobenzoic acid alone, however, was unable to stimulate ovary growth. Thus, in addition to removing IAA transport from the apical shoot, the accumulation of a promotive factor is also necessary to induce parthenocarpic growth in decapitated plants.
Resumo:
Aldehyde oxidase (AO; EC 1.2.3.1) activity was measured in seedlings of wild type or an auxin-overproducing mutant, superroot1 (sur1), of Arabidopsis thaliana. Activity staining for AO after native polyacrylamide gel electrophoresis separation of seedling extracts revealed that there were three major bands with AO activity (AO1–3) in wild-type and mutant seedlings. One of them (AO1) had a higher substrate preference for indole-3-aldehyde. This AO activity was significantly higher in sur1 mutant seedlings than in the wild type. The difference in activity was most apparent 7 d after germination, the same time required for the appearance of the remarkable sur1 phenotype, which includes epinastic cotyledons, elongated hypocotyls, and enhanced root development. Higher activity was observed in the root and hypocotyl region of the mutant seedlings. We also assayed the indole-3-acetaldehyde oxidase activity in extracts by high-performance liquid chromatography detection of indole-3-acetic acid (IAA). The activity was about 5 times higher in the extract of the sur1 seedlings, indicating that AO1 also has a substrate preference for abscisic aldehyde. Treatment of the wild-type seedlings with picloram or IAA caused no significant increase in AO1 activity. This result suggested that the higher activity of AO1 in sur1 mutant seedlings was not induced by IAA accumulation and, thus, strongly supports the possible role of AO1 in IAA biosynthesis in Arabidopsis seedlings.
Resumo:
By using a novel, extremely sensitive and specific gas chromatography-mass spectrometry technique we demonstrate in Pinus sylvestris (L.) trees the existence of a steep radial concentration gradient of the endogenous auxin, indole-3-acetic acid, over the lateral meristem responsible for the bulk of plant secondary growth, the vascular cambium. This is the first evidence that plant morphogens, such as indole-3-acetic acid, occur in concentration gradients over developing tissues. This finding gives evidence for a regulatory system in plants based on positional signaling, similar to animal systems.
Resumo:
The presence of proteins associated with the CaCO3-containing biocrystals found in a wide variety of marine organisms is well established. In these organisms, including the primitive skeleton (spicule) of the sea urchin embryo, the structural and functional role of these proteins either in the biomineralization process or in control of the structural features of the biocrystals is unclear. Recently, one of the matrix proteins of the sea urchin spicule, SM 30, has been shown to contain a carbohydrate chain (the 1223 epitope) that has been implicated in the process whereby Ca2+ is deposited as CaCo3. Because an understanding of the localization of this protein, as well as other proteins found within the spicule, is central to understanding their function, we undertook to develop methods to localize spicule matrix proteins in intact spicules, using immunogold techniques and scanning electron microscopy. Gold particles indicative of this matrix glycoprotein could not be detected on the surface of spicules that had been isolated from embryo homogenates and treated with alkaline hypochlorite to remove any associated membranous material. However, when isolated spicules were etched for 2 min with dilute acetic acid (10 mM) to expose more internal regions of the crystal, SM 30 and perhaps other proteins bearing the 1223 carbohydrate epitope were detected in the calcite matrix. These results, indicating that these two antigens are widely distributed in the spicule, suggest that this technique should be applicable to any matrix protein for which antibodies are available.
Resumo:
Acid extracts and a resultant fraction from solid-phase extraction (SPE) of Romalea guttata crop and midgut tissues induce sorghum (Sorghum bicolor var. Rio) coleoptile growth in 24-h incubations an average of 49% above untreated controls. When combined with plant auxin, indole-3-acetic acid (IAA), the SPE fraction shows a synergistic reaction, yielding increases in coleoptile growth that average 295% above untreated controls and 8% above IAA standards. The interaction lowered the point of maximum sensitivity of IAA 3 orders of magnitude, resulting in a new IAA physiological set point at 10(-7) g/ml. This synergism suggests that contents in animal regurgitants making their way into plant tissue during feeding may produce a positive feedback in plant growth and development following herbivory. Such a process, also known as reward feedback, may exert major controls on ecosystem-level relationships in nature.