96 resultados para morphological functional type


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study used functional magnetic resonance imaging to demonstrate that performance of visual spatial and visual nonspatial working memory tasks involve the same regions of the lateral prefrontal cortex when all factors unrelated to the type of stimulus material are appropriately controlled. These results provide evidence that spatial and nonspatial working memory may not be mediated, respectively, by mid-dorsolateral and mid-ventrolateral regions of the frontal lobe, as widely assumed, and support the alternative notion that specific regions of the lateral prefrontal cortex make identical executive functional contributions to both spatial and nonspatial working memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have purified and characterized a novel 60-kDa protein that binds to centromeric K-type repeat DNA from Schizosaccharomyces pombe. This protein was initially purified by its ability to bind to the autonomously replicating sequence 3002 DNA. Cloning of the gene encoding this protein revealed that it possesses significant homology to the mammalian centromere DNA-binding protein CENP-B and S. pombe Abp1, and this gene was designated as cbh+ (CENP-B homologue). Cbh protein specifically interacts in vitro with the K-type repeat DNA, which is essential for centromere function. The Cbh-binding consensus sequence was determined by DNase I footprinting assays as PyPuATATPyPuTA, featuring an inverted repeat of the first four nucleotides. Based on its binding activity to centromeric DNA and homology to centromere proteins, we suggest that this protein may be a functional homologue of the mammalian CENP-B in S. pombe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synaptic localization of γ-aminobutyric acid type A (GABAA) receptors is a prerequisite for synaptic inhibitory function, but the mechanism by which different receptor subtypes are localized to postsynaptic sites is poorly understood. The γ2 subunit and the postsynaptic clustering protein gephyrin are required for synaptic localization and function of major GABAA receptor subtypes. We now show that transgenic overexpression of the γ3 subunit in γ2 subunit-deficient mice restores benzodiazepine binding sites, benzodiazepine-modulated whole cell currents, and postsynaptic miniature currents, suggesting the formation of functional, postsynaptic receptors. Moreover, the γ3 subunit can substitute for γ2 in the formation of GABAA receptors that are synaptically clustered and colocalized with gephyrin in vivo. These clusters were formed even in brain regions devoid of endogenous γ3 subunit, indicating that the factors present for clustering of γ2 subunit-containing receptors are sufficient to cluster γ3 subunit-containing receptors. The GABAA receptor and gephyrin-clustering properties of the ectopic γ3 subunit were also observed for the endogenous γ3 subunit, but only in the absence of the γ2 subunit, suggesting that the γ3 subunit is at a competitive disadvantage with the γ2 subunit for clustering of postsynaptic GABAA receptors in wild-type mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many viruses have evolved mechanisms for evading the host immune system by synthesizing proteins that interfere with the normal immune response. The poxviruses are among the most accomplished at deceiving their hosts’ immune systems. The nucleotide sequence of the genome of the human cutaneous poxvirus, molluscum contagiosum virus (MCV) type 1, was recently reported to contain a region that resembles a human chemokine. We have cloned and expressed the chemokine-like genes from MCV type 1 and the closely related MCV type 2 to determine a potential role for these proteins in the viral life cycle. In monocyte chemotaxis assays, the viral proteins have no chemotactic activity but both viral proteins block the chemotactic response to the human chemokine, macrophage inflammatory protein (MIP)-1α. Like MIP-1α, both viral proteins also inhibit the growth of human hematopoietic progenitor cells, but the viral proteins are more potent in this activity than the human chemokine. These viral chemokines antagonize the chemotactic activity of human chemokines and have an inhibitory effect on human hematopoietic progenitor cells. We hypothesize that the inhibition of chemotaxis is an immune evasion function of these proteins during molluscum contagiosum virus infection. The significance of hematopoietic progenitor cell inhibition in viral pathogenesis is uncertain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been assumed that constitutive and regulated splicing of RNA polymerase II transcripts depends exclusively on signals present in the RNA molecule. Here we show that changes in promoter structure strongly affect splice site selection. We investigated the splicing of the ED I exon, which encodes a facultative type III repeat of fibronectin, whose inclusion is regulated during development and in proliferative processes. We used an alternative splicing assay combined with promoter swapping to demonstrate that the extent of ED I splicing is dependent on the promoter structure from which the transcript originated and that this regulation is independent of the promoter strength. Thus, these results provide the first evidence for coupling between alternative splicing and promoter-specific transcription, which agrees with recent cytological and biochemical evidence of coordination between splicing and transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small subunit of calpain, a calcium-dependent cysteine protease, was found to interact with the cytoplasmic domain of the common cytokine receptor γ chain (γc) in a yeast two-hybrid interaction trap assay. This interaction was functional as demonstrated by the ability of calpain to cleave in vitro-translated wild-type γc, but not γc containing a mutation in the PEST (proline, glutamate, serine, and threonine) sequence in its cytoplasmic domain, as well as by the ability of endogenous calpain to mediate cleavage of γc in a calcium-dependent fashion. In T cell receptor-stimulated murine thymocytes, calpain inhibitors decreased cleavage of γc. Moreover, in single positive CD4+ thymocytes, not only did a calpain inhibitor augment CD3-induced proliferation, but antibodies to γc blocked this effect. Finally, treatment of cells with ionomycin could inhibit interleukin 2-induced STAT protein activation, but this inhibition could be reversed by calpain inhibitors. Together, these data suggest that calpain-mediated cleavage of γc represents a mechanism by which γc-dependent signaling can be controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of cell-specialization genes is likely to be changing in tumor cells as their differentiation declines. Functional changes in these genes might yield unusual peptide epitopes with anti-tumor potential and could occur without modification in the DNA sequence of the gene. Melanomas undergo a characteristic decline in melanization that may reflect altered contributions of key melanocytic genes such as tyrosinase. Quantitative reverse transcriptase–PCR of the wild-type (C) tyrosinase gene in transgenic (C57BL/6 strain) mouse melanomas has revealed a shift toward alternative splicing of the pre-mRNA that generated increased levels of the Δ1b and Δ1d mRNA splice variants. The spontaneous c2j albino mutation of tyrosinase (in the C57BL/6 strain) changes the pre-mRNA splicing pattern. In c2j/c2j melanomas, alternative splicing was again increased. However, while some mRNAs (notably Δ1b) present in C/C were obligatorily absent, others (Δ3 and Δ1d) were elevated. In c2j/c2j melanomas, the percentage of total tyrosinase transcripts attributable to Δ3 reached approximately 2-fold the incidence in c2j/c2j or C/C skin melanocytes. The percentage attributable to Δ1d rose to approximately 2-fold the incidence in c2j/c2j skin, and to 10-fold that in C/C skin. These differences provide a basis for unique mouse models in which the melanoma arises in skin grafted from a C/C or c2j/c2j transgenic donor to a transgenic host of the same or opposite tyrosinase genotype. Immunotherapy designs then could be based on augmenting those antigenic peptides that are novel or overrepresented in a tumor relative to the syngeneic host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past two decades have greatly improved our knowledge of vertebrate skeletal morphogenesis. It is now clear that bony morphology lacks individual descriptive specification and instead results from an interplay between positional information assigned during early limb bud deployment and its “execution” by highly conserved cellular response programs of derived connective tissue cells (e.g., chondroblasts and osteoblasts). Selection must therefore act on positional information and its apportionment, rather than on more individuated aspects of presumptive adult morphology. We suggest a trait classification system that can help integrate these findings in both functional and phylogenetic examinations of fossil mammals and provide examples from the human fossil record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sperm acrosome reaction is a Ca2+-dependent exocytotic event that is triggered by adhesion to the mammalian egg’s zona pellucida. Previous studies using ion-selective fluorescent probes suggested a role of voltage-sensitive Ca2+ channels in acrosome reactions. Here, whole-cell patch clamp techniques are used to demonstrate the expression of functional T-type Ca2+ channels during mouse spermatogenesis. The germ cell T current is inhibited by antagonists of T-type channels (pimozide and amiloride) as well as by antagonists whose major site of action is the somatic cell L-type Ca2+ channel (1,4-dihydropyridines, arylalkylamines, benzothiazapines), as has also been reported for certain somatic cell T currents. In sperm, inhibition of T channels during gamete interaction inhibits zona pellucida-dependent Ca2+ elevations, as demonstrated by ion-selective fluorescent probes, and also inhibits acrosome reactions. These studies directly link sperm T-type Ca2+ channels to fertilization. In addition, the kinetics of channel inhibition by 1,4-dihydropyridines suggests a mechanism for the reported contraceptive effects of those compounds in human males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronized network responses in thalamus depend on phasic inhibition originating in the thalamic reticular nucleus (nRt) and are mediated by the neurotransmitter γ-aminobutyric acid (GABA). A suggested role for intra-nRt connectivity in inhibitory phasing remains controversial. Recently, functional GABA type B (GABAB) receptors were demonstrated on nRt cells, and the slow time course of the GABAB synaptic response seems ideally suited to deinactivate low-threshold calcium channels. This promotes burst firing, a characteristic feature of synchronized responses. Here we investigate GABAB-mediated rebound burst firing in thalamic cells. Whole-cell current-clamp recordings were obtained from nRt cells and somatosensory thalamocortical relay cells in rat brain slices. Synthetic GABAB inhibitory postsynaptic potentials, generated by a hybrid computer–neuron synapse (dynamic clamp), triggered rebound low-threshold calcium spikes in both cell types when peak inhibitory postsynaptic potential hyperpolarization was greater than −92 mV. The threshold inhibitory postsynaptic potential conductance for rebound burst generation was comparable in nRt (7 nS) and thalamocortical (5 nS) cells. However, burst onset in nRt (1 s) was considerably delayed compared with thalamocortical (0.6 s) cells. Thus, GABAB inhibitory postsynaptic potentials can elicit low-threshold calcium spikes in both relay and nRt neurons, but the resultant oscillation frequency would be faster for thalamocortical–nRt networks (3 Hz) than for nRt–nRt networks (1–2 Hz). We conclude, therefore, that fast (>2 Hz) GABAB-dependent thalamic oscillations are maintained primarily by reciprocal connections between excitatory and inhibitory cells. These findings further indicate that when oscillatory neural networks contain both recurrent and reciprocal inhibition, then distinct population frequencies may result when one or the other type of inhibition is favored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yeast genome encodes four proteins (Pms1 and Mlh1–3) homologous to the bacterial mismatch repair component, MutL. Using two hybrid-interaction and coimmunoprecipitation studies, we show that these proteins can form only three types of complexes in vivo. Mlh1 is the common component of all three complexes, interacting with Pms1, Mlh2, and Mlh3, presumptively as heterodimers. The phenotypes of single deletion mutants reveal distinct functions for the three heterodimers during meiosis: in a pms1 mutant, frequent postmeiotic segregation indicates a defect in the correction of heteroduplex DNA, whereas the frequency of crossing-over is normal. Conversely, crossing-over in the mlh3 mutant is reduced to ≈70% of wild-type levels but correction of heteroduplex is normal. In a mlh2 mutant, crossing-over is normal and postmeiotic segregation is not observed but non-Mendelian segregation is elevated and altered with respect to parity. Finally, to a first approximation, the mlh1 mutant represents the combined single mutant phenotypes. Taken together, these data imply modulation of a basic Mlh1 function via combination with the three other MutL homologs and suggest specifically that Mlh1 combines with Mlh3 to promote meiotic crossing-over.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.