23 resultados para mating speed
Resumo:
Cryptococcus neoformans is a major opportunistic fungal pathogen in AIDS and other immunosuppressed patients. We have shown that wild-type haploid C. neoformans can develop an extensive hyphal phase under appropriate conditions. Hyphae produced under these conditions are monokaryotic, possess unfused clamp connections, and develop basidia with viable basidiospores. The ability to undergo this transition is determined by the presence of the alpha-mating type locus and is independent of serotype. The association of the hyphal phase with the alpha-mating type may explain the preponderance of this mating type in the environment and the nature of the infectious propagule of C. neoformans.
Resumo:
Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/ junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.
Resumo:
The fertility component of natural selection acting on chromosomal inversions in two experimental populations of Drosophila pseudoobscura was subdivided into the effects of female fecundity and male mating success. The offspring of the three female genotypes could be distinguished by their mitochondrial DNA haplotypes, thus permitting a direct measurement of the relative fecundities of the female genotype. The effects of male mating success on inversion frequency were measured by comparing inversion frequencies in parents and their offspring. Selection by fertility caused significant changes in inversion frequency in both populations. In one population, the changes in inversion frequency due to female fecundity and to male mating success were comparable. In the other population, however, the changes in inversion frequency due to male mating success were considerably larger than those due to female fecundity. The difference between the two populations underscores the intrinsic variability of the fertility component of fitness.
Resumo:
When in Escherichia coli the host RNA polymerase is replaced by the 8-fold faster bacteriophage T7 enzyme for transcription of the lacZ gene, the beta-galactosidase yield per transcript drops as a result of transcript destabilization. We have measured the beta-galactosidase yield per transcript from T7 RNA polymerase mutants that exhibit a reduced elongation speed in vitro. Aside from very slow mutants that were not sufficiently processive to transcribe the lacZ gene, the lower the polymerase speed, the higher the beta-galactosidase yield per transcript. In particular, a mutant which was 2.7-fold slower than the wild-type enzyme yielded 3.4- to 4.6-fold more beta-galactosidase per transcript. These differences in yield vanished in the presence of the rne-50 mutation and therefore reflect the unequal sensitivity of the transcripts to RNase E. We propose that the instability of the T7 RNA polymerase transcripts stems from the unmasking of an RNase E-sensitive site(s) between the polymerase and the leading ribosome: the faster the polymerase, the longer the lag between the synthesis of this site(s) and its shielding by ribosomes, and the lower the transcript stability.
Resumo:
Mating triggers behavioral and physiological changes in the Drosophila melanogaster female, including an elevation of egg laying. Seminal fluid molecules from the male accessory gland are responsible for initial behavioral changes, but persistence of these changes requires stored sperm. Using genetic analysis, we have identified a seminal fluid protein that is responsible for an initial elevation of egg laying. This molecule, Acp26Aa, has structural features of a prohormone and contains a region with amino acid similarity to the egg-laying hormone of Aplysia. Acp26Aa is transferred to the female during mating, where it undergoes processing. Here we report the generation and analysis of mutants, including a null, in Acp26Aa. Females mated to male flies that lack Acp26Aa lay fewer eggs than do mates of normal males. This effect is apparent only on the first day after mating. The null mutation has no other detectable physiological or behavioral effects on the male or the mated female.
Resumo:
In ciliate protists, sex involves the temporary joining of two cells of compatible mating type, followed by meiosis and exchange of gametic nuclei between conjugants. Reproduction is by asexual binary fission following conjugation. For the many ciliates with fixed multiple mating types, frequency-dependent sex-ratio theory predicts equal frequencies of mating types, if sex is common in nature. Here, we report that in natural populations of Tetrahymena thermophila sexually immature cells, indicative of recent conjugation, are found from spring through fall. In addition, the seven mating types occur in approximately equal frequencies, and these frequencies appear to be maintained by interaction between complex, multiple mat alleles and environmental conditions during conjugation. Such genotype-environment interaction determining mating type frequency is rare among ciliates.
Resumo:
Parvalbumin (PV) is a high affinity Ca(2+)-binding protein found at high concentration in fast-contracting/relaxing skeletal muscle fibers of vertebrates. It has been proposed that PV acts in the process of muscle relaxation by facilitating Ca2+ transport from the myofibrils to the sarcoplasmic reticulum. However, on the basis of metal-binding kinetics of PV in vitro, this hypothesis has been challenged. To investigate the function of PV in skeletal muscle fibers, direct gene transfer was applied in normal and regenerating rat soleus muscles which do not synthesize detectable amounts of PV. Two weeks after in vivo transfection with PV cDNA, considerable levels of PV mRNA and protein were detected in normal muscle, and even higher amounts were detected in regenerating muscle. Twitch half-relaxation time was significantly shortened in a dose-dependent way in transfected muscles, while contraction time remained unaltered. The observed shortening of half-relaxation time is due to PV and its ability to bind Ca2+, because a mutant protein lacking Ca(2+)-binding capacity did not promote any change in physiology. These results directly demonstrate the physiological function of PV as a relaxing factor in mammalian skeletal muscle.
Resumo:
Female moths often become depleted of sex pheromone after mating as the various components of virgin behavior are switched off. In examining a potential male contribution to these events in the corn earworm moth Helicoverpa zea, we have characterized a basic polypeptide from the tissues producing (accessory glands) and storing (duplex) the seminal fluids. The peptide evokes the depletion of sex pheromone when injected into virgin females. This pheromonostatic peptide (PSP) is 57 amino acids long and contains a single disulfide bridge. It is blocked at the N terminus with pyroglutamate and at the C terminus by amidation. As little as 23 ng of peptide evokes the near-complete depletion of pheromone in decapitated (neck-ligated) females that had been injected with pheromone biosynthesis-activating neuropeptide. Activity is approximately 15-fold less in intact virgins, showing that the head limits the expression of activity in these injected females. Females mated to surgically impaired males, capable of producing a spermatophore but not transferring spermatozoa or seminal fluids, are depleted of pheromone by injected peptide. Females whose abdominal nerve cords have been severed are not depleted of pheromone after mating. Thus, neural signals either descending or ascending via the nerve cord are required for the depletion of pheromone after mating. PSP, from the seminal fluids, may participate in this process by direct or indirect action on the glandular tissue; if so, it represents an unusual mechanism in insects for the regulation by seminal fluids of postmating reproductive behavior.