38 resultados para long lived


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the electronically excited state of the isolated reaction center of photosystem II with high-resolution fluorescence spectroscopy at 5 K and compared the obtained spectral features with those obtained earlier for the primary electron donor. The results show that there is a striking resemblance between the emitting and charge-separating states in the photosystem II reaction center, such as a very similar shape of the phonon wing with characteristic features at 19 and 80 cm−1, almost identical frequencies of a number of vibrational modes, a very similar double-Gaussian shape of the inhomogeneous distribution function, and relatively strong electron-phonon coupling for both states. We suggest that the emission at 5 K originates either from an exciton state delocalized over the inactive branch of the photosystem or from a fraction of the primary electron donor that is long-lived at 5 K. The latter possibility can be explained by a distribution of the free energy difference of the primary charge separation reaction around zero. Both possibilities are in line with the idea that the state that drives primary charge separation in the reaction center of photosystem II is a collective state, with contributions from all chlorophyll molecules in the central part of the complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD4+ T cell activation, required for virus replication in these cells, occurs in local microenvironmental domains in transient bursts. Thus, although most HIV originates from short-lived virus-producing cells, it is unlikely that chronic infection is generally sustained in rapid continuous cycles of productive infection as has been proposed. Such continuity of productive infection cycles would depend on efficient long-range transmission of HIV from one set of domains to another, in turn requiring the maintenance of sufficiently high concentrations of cell-free virus across lymphoid tissues at all times. By contrast, long-lived cellular sources of HIV maintain the capacity to infect newly activated cells at close range despite the temporal and spatial discontinuities of activation events. Such proximal activation and transmission (PAT) involving chronically and latently infected cells may be responsible for sustained infection, particularly when viral loads are low. Once CD4 cells are productively infected through PAT, they can infect other activated cells in their immediate vicinity. Such events propagate locally but generally do not spread systemically, unlike in the acute phase of the infection, because of the early establishment of protective anergy. Importantly, antiretroviral drug treatment is likely to differentially impact long-range transmission and PAT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Escherichia coli, programmed cell death is mediated through “addiction modules” consisting of two genes; the product of one gene is long-lived and toxic, whereas the product of the other is short-lived and antagonizes the toxic effect. Here we show that the product of λrexB, one of the few genes expressed in the lysogenic state of bacteriophage λ, prevents cell death directed by each of two addiction modules, phd-doc of plasmid prophage P1 and the rel mazEF of E. coli, which is induced by the signal molecule guanosine 3′,5′-bispyrophosphate (ppGpp) and thus by amino acid starvation. λRexB inhibits the degradation of the antitoxic labile components Phd and MazE of these systems, which are substrates of ClpP proteases. We present a model for this anti-cell death effect of λRexB through its action on the ClpP proteolytic subunit. We also propose that the λrex operon has an additional function to the well known phenomenon of exclusion of other phages; it can prevent the death of lysogenized cells under conditions of nutrient starvation. Thus, the rex operon may be considered as the “survival operon” of phage λ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humans transformed Western Atlantic coastal marine ecosystems before modern ecological investigations began. Paleoecological, archeological, and historical reconstructions demonstrate incredible losses of large vertebrates and oysters from the entire Atlantic coast. Untold millions of large fishes, sharks, sea turtles, and manatees were removed from the Caribbean in the 17th to 19th centuries. Recent collapses of reef corals and seagrasses are due ultimately to losses of these large consumers as much as to more recent changes in climate, eutrophication, or outbreaks of disease. Overfishing in the 19th century reduced vast beds of oysters in Chesapeake Bay and other estuaries to a few percent of pristine abundances and promoted eutrophication. Mechanized harvesting of bottom fishes like cod set off a series of trophic cascades that eliminated kelp forests and then brought them back again as fishers fished their way down food webs to small invertebrates. Lastly, but most pervasively, mechanized harvesting of the entire continental shelf decimated large, long-lived fishes and destroyed three-dimensional habitats built up by sessile corals, bryozoans, and sponges. The universal pattern of losses demonstrates that no coastal ecosystem is pristine and few wild fisheries are sustainable along the entire Western Atlantic coast. Reconstructions of ecosystems lost only a century or two ago demonstrate attainable goals of establishing large and effective marine reserves if society is willing to pay the costs. Historical reconstructions provide a new scientific framework for manipulative experiments at the ecosystem scale to explore the feasibility and benefits of protection of our living coastal resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical element krypton, whose principal source is the atmosphere, had a long-lived radioactive content, in the mid-1940s, of less than 5 dpm per liter of krypton. In the late 1940s, this content had risen to values in the range of 100 dpm per liter. It is now some hundred times higher than the late 1940 values. This radioactivity is the result of the dissolving of nuclear fuel for military and civilian purposes, and the release thereby of the fission product krypton-85 (half-life = 10.71 years, fission yield = 0.2%). The present largest emitter of krypton-85 is the French reprocessing plant at Cap-de-la-Hague.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation “equilibrate,” but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The success of highly active anti-retroviral therapy (HAART) has inspired new concepts for eliminating HIV from infected individuals. A major obstacle is the persistence of long-lived reservoirs of latently infected cells that might become activated at some time after cessation of therapy. We propose that, in the context of treatment strategies to deliberately activate and eliminate these reservoirs, hybrid toxins targeted to kill HIV-infected cells be reconsidered in combination with HAART. Such combinations might also prove valuable in protocols aimed at preventing mother-to-child transmission and establishment of infection immediately after exposure to HIV. We suggest experimental approaches in vitro and in animal models to test various issues related to safety and efficacy of this concept.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-gene mutations that extend lifespan provide valuable tools for the exploration of the molecular basis for age-related changes in cell and tissue function and for the pathophysiology of age-dependent diseases. We show here that mice homozygous for loss-of-function mutations at the Pit1 (Snell dwarf) locus show a >40% increase in mean and maximal longevity on the relatively long-lived (C3H/HeJ × DW/J)F1 background. Mutant dwJ/dw animals show delays in age-dependent collagen cross-linking and in six age-sensitive indices of immune system status. These findings thus demonstrate that a single gene can control maximum lifespan and the timing of both cellular and extracellular senescence in a mammal. Pituitary transplantation into dwarf mice does not reverse the lifespan effect, suggesting that the effect is not due to lowered prolactin levels. In contrast, homozygosity for the Ghrhrlit mutation, which like the Pit1dw mutation lowers plasma growth hormone levels, does lead to a significant increase in longevity. Male Snell dwarf mice, unlike calorically restricted mice, become obese and exhibit proportionately high leptin levels in old age, showing that their exceptional longevity is not simply due to alterations in adiposity per se. Further studies of the Pit1dw mutant, and the closely related, long-lived Prop-1df (Ames dwarf) mutant, should provide new insights into the hormonal regulation of senescence, longevity, and late life disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The covalent joining of topoisomerases to DNA is normally a transient step in the reaction cycle of these important enzymes. However, under a variety of circumstances, the covalent complex is converted to a long-lived or dead-end product that can result in chromosome breakage and cell death. We have discovered and partially purified an enzyme that specifically cleaves the chemical bond that joins the active site tyrosine of topoisomerases to the 3' end of DNA. The reaction products made by the purified enzyme on a variety of model substrates indicate that the enzyme cleanly hydrolyzes the tyrosine-DNA phosphodiester linkage, thereby liberating a DNA terminated with a 3' phosphate. The wide distribution of this phosphodiesterase in eukaryotes and its specificity for tyrosine linked to the 3' end but not the 5' end of DNA suggest that it plays a role in the repair of DNA trapped in complexes involving eukaryotic topoisomerase I.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2 responsiveness in individual long-lived species cannot be accurately determined from field studies or by controlled-environment experiments. However, the required long-term data sets can be obtained from continuous records of buried leaves from living trees in wetland ecosystems. Fine-resolution analysis of the lifetime leaf record of an individual birch (Betula pendula) indicates a gradual reduction of stomatal frequency as a phenotypic acclimation to CO2 increase. During the past four decades, CO2 increments of 1 part per million by volume resulted in a stomatal density decline of approximately 0.6%. It may be hypothesized that this plastic stomatal frequency response of deciduous tree species has evolved in conjunction with the overall Cenozoic reduction of atmospheric CO2 concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chaperonins prevent the aggregation of partially folded or misfolded forms of a protein and, thus, keep it competent for productive folding. It was suggested that GroEL, the chaperonin of Escherichia coli, exerts this function 1 unfolding such intermediates, presumably in a catalytic fashion. We investigated the kinetic mechanism of GroEL-induced protein unfolding by using a reduced and carbamidomethylated variant of RNase T1, RCAM-T1, as a substrate. RCAM-T1 cannot fold to completion, because the two disulfide bonds are missing, and it is, thus, a good model for long-lived folding intermediates. RCAM-T1 unfolds when GroEL is added, but GroEL does not change the microscopic rate constant of unfolding, ruling out that it catalyzes unfolding. GroEL unfolds RCAM-T1 because it binds with high affinity to the unfolded form of the protein and thereby shifts the overall equilibrium toward the unfolded state. GroEL can unfold a partially folded or misfolded intermediate by this thermodynamic coupling mechanism when the Gibbs free energy of the binding to GroEL is larger than the conformational stability of the intermediate and when the rate of its unfolding is high.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated whether T-cell memory reflects increased precursor frequencies of specific long-lived T cells and/or a low-level immune response against some form of persistent antigen. Antivirally protective CD8+ T-cell memory was analyzed mostly in the original vaccinated host to assess the role of antigen in its maintenance. T-cell mediated resistance against reinfection was measured in the spleen and in peripheral solid organs with protocols that excluded protection by antibodies. In vivo protection was compared with detectable cytotoxic T-lymphocyte precursor frequencies determined in vitro. In the spleen, in vitro detectable cytotoxic T-lymphocyte precursor frequencies remained stable independently of antigen, conferring resistance against viral replication in the spleen during reinfection. In contrast, T-cell mediated resistance against reinfection of peripheral solid organs faded away in an antigen-dependent fashion within a few days or weeks. We show that only memory T cells persistently or freshly activated with antigen efficiently extravasate into peripheral organs, where cytotoxic T lymphocytes must be able to exert effector function immediately; both the capacity to extravasate and to rapidly exert effector function critically depend on restimulation by antigen. Our experiments document that the duration of T-cell memory protective against peripheral reinfection depended on the antigen dose used for immunization, was prolonged when additional antigen was provided, and was abrogated after removal of antigen. We conclude that T-cell mediated protective immunity against the usual peripheral routes of reinfection is antigen-dependent.