19 resultados para lipid-peroxidation
Resumo:
Oxygen free radicals have been proposed to mediate amyloid peptide (beta-AP)-induced neurotoxicity. To test this hypothesis, we evaluated the effects of EUK-8, a synthetic catalytic superoxide and hydrogen peroxide scavenger, on neuronal injury produced by beta-AP in organotypic hippocampal slice cultures. Cultures of equivalent postnatal day 35 (defined as mature) and 14 (defined as immature) were exposed to various concentrations of beta-AP (1-42 or 1-40) in the absence or presence of 25 microM EUK-8 for up to 72 hours. Neuronal injury was assessed by lactate dehydrogenase release and semiquantitative analysis of propidium iodide uptake at various times after the initiation of beta-AP exposure. Free radical production was inferred from the relative increase in dichlorofluorescein fluorescence, and the degree of lipid peroxidation was determined by assaying thiobarbituric acid-reactive substances. Treatment of mature cultures with beta-AP (50-250 microg/ml) in serum-free conditions resulted in a reproducible pattern of damage, causing a time-dependent increase in neuronal injury accompanied with formation of reactive oxygen species. However, immature cultures were entirely resistant to beta-AP-induced neurotoxicity and also demonstrated no dichlorofluorescein fluorescence or increased lipid peroxidation after beta-AP treatment. Moreover, mature slices exposed to beta-AP in the presence of 25 microM EUK-8 were significantly protected from beta-AP-induced neurotoxicity. EUK-8 also completely blocked beta-AP-induced free radical accumulation and lipid peroxidation. These results not only support a role for oxygen free radicals in beta-AP toxicity but also highlight the therapeutic potential of synthetic radical scavengers in Alzheimer disease.
Resumo:
The experiments reported here were designed to test the hypothesis that the two-electron quinone reductase DT-diaphorase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC 1.6.99.2] functions to maintain membrane-bound coenzyme Q (CoQ) in its reduced antioxidant state, thereby providing protection from free radical damage. DT-diaphorase was isolated and purified from rat liver cytosol, and its ability to reduce several CoQ homologs incorporated into large unilamellar vesicles was demonstrated. Addition of NADH and DT-diaphorase to either large unilamellar or multilamellar vesicles containing homologs of CoQ, including CoQ9 and CoQ10, resulted in the essentially complete reduction of the CoQ. The ability of DT-diaphorase to maintain the reduced state of CoQ and protect membrane components from free radical damage as lipid peroxidation was tested by incorporating either reduced CoQ9 or CoQ10 and the lipophylic azoinitiator 2,2'-azobis(2,4-dimethylvaleronitrile) into multilamellar vesicles in the presence of NADH and DT-diaphorase. The presence of DT-diaphorase prevented the oxidation of reduced CoQ and inhibited lipid peroxidation. The interaction between DT-diaphorase and CoQ was also demonstrated in an isolated rat liver hepatocyte system. Incubation with adriamycin resulted in mitochondrial membrane damage as measured by membrane potential and the release of hydrogen peroxide. Incorporation of CoQ10 provided protection from adriamycin-induced mitochondrial membrane damage. The incorporation of dicoumarol, a potent inhibitor of DT-diaphorase, interfered with the protection provided by CoQ. The results of these experiments provide support for the hypothesis that DT-diaphorase functions as an antioxidant in both artificial membrane and natural membrane systems by acting as a two-electron CoQ reductase that forms and maintains the antioxidant form of CoQ. The suggestion is offered that DT-diaphorase was selected during evolution to perform this role and that its conversion of xenobiotics and other synthetic molecules is secondary and coincidental.
Resumo:
The antiapoptosis potential of Bcl-2 protein is well established, but the mechanism of Bcl-2 action is still poorly understood. Using the phosphatase inhibitor okadaic acid or the chemotherapeutic drug taxol, we found that Bcl-2 was phosphorylated in lymphoid cells. Phospho amino acid analysis revealed that Bcl-2 was phosphorylated on serine. Under similar conditions, okadaic acid or taxol treatment led to the induction of apoptosis in these cells. Thus, phosphorylation of Bcl-2 seems to inhibit its ability to interfere with apoptosis. In addition, phosphorylated Bcl-2 can no longer prevent lipid peroxidation as required to protect cells from apoptosis.
Resumo:
The influence of thermally induced changes in the lipid core structure on the oxidative resistance of discrete, homogeneous low density lipoprotein (LDL) subspecies (d, 1.0297-1.0327 and 1.0327-1.0358 g/ml) has been evaluated. The thermotropic transition of the LDL lipid core at temperatures between 15 degrees C and 37 degrees C, determined by differential scanning calorimetry, exerted significant effects on the kinetics of copper-mediated LDL oxidation expressed in terms of intrinsic antioxidant efficiency (lag time) and diene production rate. Thus, the temperature coefficients of oxidative resistance and maximum oxidation rate showed break points at the core transition temperature. Temperature-induced changes in copper binding were excluded as the molecular basis of such effects, as the saturation of LDL with copper was identical below and above the core transition. At temperatures below the transition, the elevation in lag time indicated a greater resistance to oxidation, reflecting a higher degree of antioxidant protection. This effect can be explained by higher motional constraints and local antioxidant concentrations, the latter resulting from the freezing out of antioxidants from crystalline domains of cholesteryl esters and triglycerides. Below the transition temperature, the conjugated diene production rate was decreased, a finding that correlated positively with the average size of the cooperative units of neutral lipids estimated from the calorimetric transition width. The reduced accessibility and structural hindrance in the cluster organization of the core lipids therefore inhibits peroxidation. Our findings provide evidence for a distinct effect of the dynamic state of the core lipids on the oxidative susceptibility of LDL and are therefore relevant to the atherogenicity of these cholesterol-rich particles.