20 resultados para life-history, ant


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variability in population growth rate is thought to have negative consequences for organism fitness. Theory for matrix population models predicts that variance in population growth rate should be the sum of the variance in each matrix entry times the squared sensitivity term for that matrix entry. I analyzed the stage-specific demography of 30 field populations from 17 published studies for pattern between the variance of a demographic term and its contribution to population growth. There were no instances in which a matrix entry both was highly variable and had a large effect on population growth rate; instead, correlations between estimates of temporal variance in a term and contribution to population growth (sensitivity or elasticity) were overwhelmingly negative. In addition, survivorship or growth sensitivities or elasticities always exceeded those of fecundity, implying that the former two terms always contributed more to population growth rate. These results suggest that variable life history stages tend to contribute relatively little to population growth rates because natural selection may alter life histories to minimize stages with both high sensitivity and high variation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The life history of Candida albicans presents an enigma: this species is thought to be exclusively asexual, yet strains show extensive phenotypic variation. To address the population genetics of C. albicans, we developed a genetic typing method for codominant single-locus markers by screening randomly amplified DNA for single-strand conformation polymorphisms. DNA fragments amplified by arbitrary primers were initially screened for single-strand conformation polymorphisms and later sequenced using locus-specific primers. A total of 12 single base mutations and insertions were detected from six out of eight PCR fragments. Patterns of sequence-level polymorphism observed for individual strains detected considerable heterozygosity at the DNA sequence level, supporting the view that most C. albicans strains are diploid. Population genetic analyses of 52 natural isolates from Duke University Medical Center provide evidence for both clonality and recombination in C. albicans. Evidence for clonality is supported by the presence of several overrepresented genotypes, as well as by deviation of genotypic frequencies from random (Hardy-Weinberg) expectations. However, tests for nonrandom association of alleles across loci reveal less evidence for linkage disequilibrium than expected for strictly clonal populations. Although C. albicans populations are primarily clonal, evidence for recombination suggests that sexual reproduction or some other form of genetic exchange occurs in this species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two major theories of the evolution of senescence (mutation accumulation and antagonistic pleiotropy) make different predictions about the relationships between age, inbreeding effects, and the magnitude of genetic variance components of life-history components. We show that, under mutation accumulation, inbreeding decline and three major components of genetic variance are expected to increase with age in randomly mating populations. Under the simplest version of the antagonistic pleiotropy model, no changes in the severity of inbreeding decline, dominance variance, or the genetic variance of chromosomal homozygotes are expected, but additive genetic variance may increase with age. Age-specific survival rates and mating success were measured on virgin males, using lines extracted from a population of Drosophila melanogaster. For both traits, inbreeding decline and several components of genetic variance increase with age. The results are consistent with the mutation accumulation model, but can only be explained by antagonistic pleiotropy if there is a general tendency for an increase with age in the size of allelic effects on these life-history traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coffee berry borer, Hypothenemus hampei, is the most important insect pest of coffee worldwide and has an unusual life history that ensures a high degree of inbreeding. Individual females lay a predominantly female brood within individual coffee berries and because males are flightless there is almost entirely full sib mating. We investigated the genetics associated with this interesting life history after the important discovery of resistance to the cyclodiene type insecticide endosulfan. Both the inheritance of the resistance phenotype and the resistance-associated point mutation in the gamma-aminobutyric acid receptor gene Rdl were examined. Consistent with haplodiploidy, males failed to express and transmit paternally derived resistance alleles. Furthermore, while cytological examination revealed that males are diploid, one set of chromosomes was condensed, and probably nonfunctional, in the somatic cells of all males examined. Moreover, although two sets of chromosomes were present in primary spermatocytes, the chromosomes failed to pair before the single meiotic division, and only one set was packaged in sperm. Thus, the coffee berry borer is "functionally" haplodiploid. Its genetics and life history may therefore represent an interesting intermediate step in the evolution of true haplodiploidy. The influence of this breeding system on the spread of insecticide resistance is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present data on the decay, after radiotherapy, of naive and memory human T lymphocytes with stable chromosome damage. These data are analyzed in conjunction with existing data on the decay of naive and memory T lymphocytes with unstable chromosome damage and older data on unsorted lymphocytes. The analyses yield in vivo estimates for some life-history parameters of human T lymphocytes. Best estimates of proliferation rates have naive lymphocytes dividing once every 3.5 years and memory lymphocytes dividing once every 22 weeks. It appears that memory lymphocytes can revert to the naive phenotype, but only, on average, after 3.5 years in the memory class. The lymphocytes with stable chromosome damage decay very slowly, yielding surprisingly low estimates of their death rate. The estimated parameters are used in a simple mathematical model of the population dynamics of undamaged naive and memory lymphocytes. We use this model to illustrate that it is possible for the unprimed subset of a constantly stimulated clone to stay small, even when there is a large population of specific primed cells reverting to the unprimed state.