72 resultados para lacZ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) kinase was studied for its roles in physiological responses to nutritional deprivation in Escherichia coli. A mutant lacking polyP kinase exhibited an extended lag phase of growth, when shifted from a rich to a minimal medium (nutritional downshift). Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, guanosine 5′-diphosphate 3′-diphosphate, increased in response to the nutritional downshift, but, unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The expression of an amino acid biosynthetic gene, hisG, was examined by using a transcriptional lacZ fusion. Although the mutant did not express the fusion in response to the nutritional downshift, Northern blot analysis revealed a significant increase of hisG-lacZ mRNA. Amino acids generated by intracellular protein degradation are very important for the synthesis of enzymes at the onset of starvation. In the wild type, the rate of protein degradation increased in response to the nutritional downshift whereas it did not in the mutant. Supplementation of amino acids at low concentrations to the minimal medium enabled the mutant to express the hisG-lacZ fusion. Thus, the impaired regulation of protein degradation results in the adaptation defect, suggesting that polyP kinase is required to stimulate protein degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The twin-domain model [Liu, L. F. & Wang, J. C. (1987) Proc. Natl. Acad. Sci. USA 84, 7024–7027] suggests that closely spaced, divergent, superhelically sensitive promoters can affect the transcriptional activity of one another by transcriptionally induced negative DNA supercoiling generated in the divergent promoter region. This gene arrangement is observed for many LysR-type-regulated operons in bacteria. We have examined the effects of divergent transcription in the prototypic LysR-type system, the ilvYC operon of Escherichia coli. Double-reporter constructs with the lacZ gene under transcriptional control of the ilvC promoter and the galK gene under control of the divergent ilvY promoter were used to demonstrate that a down-promoter mutation in the ilvY promoter severely decreases in vivo transcription from the ilvC promoter. However, a down-promoter mutation in the ilvC promoter only slightly affects transcription from the ilvY promoter. In vitro transcription assays with DNA topoisomers showed that transcription from the ilvC promoter increases over the entire range of physiological superhelical densities, whereas transcription initiation from the ilvY promoter exhibits a broad optimum at a midphysiological superhelical density. Evidence that this promoter coupling is DNA supercoiling-dependent is provided by the observation that a novobiocin-induced decrease in global negative superhelicity results in an increase in ilvY promoter activity and a decrease in ilvC promoter activity predicted by the in vitro data. We suggest that this transcriptional coupling is important for coordinating basal level expression of the ilvYC operon with the nutritional and environmental conditions of cell growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of cell identity during development is specified in large part by the unique expression patterns of multiple homeobox-containing (Hox) genes in specific segments of an embryo. Trithorax and Polycomb-group (Trx-G and Pc-G) proteins in Drosophila maintain Hox expression or repression, respectively. Mixed lineage leukemia (MLL) is frequently involved in chromosomal translocations associated with acute leukemia and is the one established mammalian homologue of Trx. Bmi-1 was first identified as a collaborator in c-myc-induced murine lymphomagenesis and is homologous to the Drosophila Pc-G member Posterior sex combs. Here, we note the axial-skeletal transformations and altered Hox expression patterns of Mll-deficient and Bmi-1-deficient mice were normalized when both Mll and Bmi-1 were deleted, demonstrating their antagonistic role in determining segmental identity. Embryonic fibroblasts from Mll-deficient compared with Bmi-1-deficient mice demonstrate reciprocal regulation of Hox genes as well as an integrated Hoxc8-lacZ reporter construct. Reexpression of MLL was able to overcome repression, rescuing expression of Hoxc8-lacZ in Mll-deficient cells. Consistent with this, MLL and BMI-I display discrete subnuclear colocalization. Although Drosophila Pc-G and Trx-G members have been shown to maintain a previously established transcriptional pattern, we demonstrate that MLL can also dynamically regulate a target Hox gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two mouse insulin genes, Ins1 and Ins2, were disrupted and lacZ was inserted at the Ins2 locus by gene targeting. Double nullizygous insulin-deficient pups were growth-retarded. They did not show any glycosuria at birth but soon after suckling developed diabetes mellitus with ketoacidosis and liver steatosis and died within 48 h. Interestingly, insulin deficiency did not preclude pancreas organogenesis and the appearance of the various cell types of the endocrine pancreas. The presence of lacZ expressing β cells and glucagon-positive α cells was demonstrated by cytochemistry and immunocytochemistry. Reverse transcription-coupled PCR analysis showed that somatostatin and pancreatic polypeptide mRNAs were present, although at reduced levels, accounting for the presence also of δ and pancreatic polypeptide cells, respectively. Morphometric analysis revealed enlarged islets of Langherans in the pancreas from insulin-deficient pups, suggesting that insulin might function as a negative regulator of islet cell growth. Whether insulin controls the growth of specific islet cell types and the molecular basis for this action remain to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli cause a characteristic histopathology in intestinal cells known as attaching and effacing. The attaching and effacing lesion is encoded by the Locus of Enterocyte Effacement (LEE) pathogenicity island, which encodes a type III secretion system, the intimin intestinal colonization factor, and the translocated intimin receptor protein that is translocated from the bacterium to the host epithelial cells. Using lacZ reporter gene fusions, we show that expression of the LEE operons encoding the type III secretion system, translocated intimin receptor, and intimin is regulated by quorum sensing in both enterohemorrhagic E. coli and enteropathogenic E. coli. The luxS gene recently shown to be responsible for production of autoinducer in the Vibrio harveyi and E. coli quorum-sensing systems is responsible for regulation of the LEE operons, as shown by the mutation and complementation of the luxS gene. Regulation of intestinal colonization factors by quorum sensing could play an important role in the pathogenesis of disease caused by these organisms. These results suggest that intestinal colonization by E. coli O157:H7, which has an unusually low infectious dose, could be induced by quorum sensing of signals produced by nonpathogenic E. coli of the normal intestinal flora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphic regions consisting of a variable number of tandem repeats within intron 2 of the gene coding for the serotonin transporter protein 5-HTT have been associated with susceptibility to affective disorders. We have cloned two of these intronic polymorphisms, Stin2.10 and Stin2.12, into an expression vector containing a heterologous minimal promoter and the bacterial LacZ reporter gene. These constructs were then used to produce transgenic mice. In embryonic day 10.5 embryos, both Stin2.10 and Stin2.12 produced consistent β-galactosidase expression in the embryonic midbrain, hindbrain, and spinal cord floor plate. However, we observed that the levels of β-galactosidase expression produced by both the Stin2.10 and Stin2.12 within the rostral hindbrain differed significantly at embryonic day 10.5. Our data suggest that these polymorphic variable number of tandem repeats regions act as transcriptional regulators and have allele-dependent differential enhancer-like properties within an area of the hindbrain where the 5-HTT gene is known to be transcribed at this stage of development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for ∼10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-component regulatory systems require highly specific interactions between histidine kinase (transmitter) and response regulator (receiver) proteins. We have developed a novel genetic strategy that is based on tightly regulated synthesis of a given protein to identify domains and residues of an interacting protein that are critical for interactions between them. Using a reporter strain synthesizing the nonpartner kinase VanS under tight arabinose control and carrying a promoter-lacZ fusion activated by phospho-PhoB, we isolated altered recognition (AR) mutants of PhoB showing enhanced activation (phosphorylation) by VanS as arabinose-dependent Lac+ mutants. Changes in the PhoBAR mutants cluster in a “patch” near the proposed helix 4 of PhoB based on the CheY crystal structure (a homolog of the PhoB receiver domain) providing further evidence that helix 4 lies in the kinase-regulator interface. Based on the CheY structure, one mutant has an additional change in a region that may propagate a conformational change to helix 4. The overall genetic strategy described here may also be useful for studying interactions of other components of the vancomycin resistance and Pi signal transduction pathways, other two-component regulatory systems, and other interacting proteins. Conditionally replicative oriRR6Kγ attP “genome targeting” suicide plasmids carrying mutagenized phoB coding regions were integrated into the chromosome of a reporter strain to create mutant libraries; plasmids encoding mutant PhoB proteins were subsequently retrieved by P1-Int-Xis cloning. Finally, the use of similar genome targeting plasmids and P1-Int-Xis cloning should be generally useful for constructing genomic libraries from a wide array of organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased histone acetylation has been correlated with increased transcription, and regions of heterochromatin are generally hypoacetylated. In investigating the cause-and-effect relationship between histone acetylation and gene activity, we have characterized two yeast histone deacetylase complexes. Histone deacetylase-A (HDA) is an ≈350-kDa complex that is highly sensitive to the deacetylase inhibitor trichostatin A. Histone deacetylase-B (HDB) is an ≈600-kDa complex that is much less sensitive to trichostatin A. The HDA1 protein (a subunit of the HDA activity) shares sequence similarity to RPD3, a factor required for optimal transcription of certain yeast genes. RPD3 is associated with the HDB activity. HDA1 also shares similarity to three new open reading frames in yeast, designated HOS1, HOS2, and HOS3. We find that both hda1 and rpd3 deletions increase acetylation levels in vivo at all sites examined in both core histones H3 and H4, with rpd3 deletions having a greater impact on histone H4 lysine positions 5 and 12. Surprisingly, both hda1 and rpd3 deletions increase repression at telomeric loci, which resemble heterochromatin with rpd3 having a greater effect. In addition, rpd3 deletions retard full induction of the PHO5 promoter fused to the reporter lacZ. These data demonstrate that histone acetylation state has a role in regulating both heterochromatic silencing and regulated gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently reported development of an experimental model for the study of nitric oxide (NO·) toxicology in vivo. SJL mice were injected with superantigen-bearing RcsX (pre-B-cell lymphoma) cells, which migrated to the spleen and lymph nodes, where their rapid growth induced activation of macrophages to produce large amounts of NO· over a period of several weeks. In the experiments described here, we used this model to investigate mutagenesis in splenocytes exposed to NO· during RcsX cell growth. Transgenic mice were produced by crossbreeding animals of the pUR288 transgenic C57BL/6 and SJL strains. RcsX cells were injected into F1 mice and NO· production was confirmed by quantification of urinary nitrate, the ultimate metabolite of NO·. Mutant frequency in the lacZ gene of the pUR288 plasmid was determined in DNA isolated from spleen (target) and kidney (nontarget) tissues. A significant elevation in mutant frequency was found in the spleen, but not in the kidney, of tumor-bearing mice. Furthermore, increases in mutant frequency in the spleen as well as NO· production were abrogated by administration of N-methylarginine, a NO· inhibitor, to mice following injection of RcsX cells. These results indicate that NO· had mutagenic activity in RcsX tumor-bearing mice and thus support a possible role for its involvement in the carcinogenic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulatory regions surrounding many genes may be large and difficult to study using standard transgenic approaches. Here we describe the use of bacterial artificial chromosome clones to rapidly survey hundreds of kilobases of DNA for potential regulatory sequences surrounding the mouse bone morphogenetic protein-5 (Bmp5) gene. Simple coinjection of large insert clones with lacZ reporter constructs recapitulates all of the sites of expression observed previously with numerous small constructs covering a large, complex regulatory region. The coinjection approach has made it possible to rapidly survey other regions of the Bmp5 gene for potential control elements, to confirm the location of several elements predicted from previous expression studies using regulatory mutations at the Bmp5 locus, to test whether Bmp5 control regions act similarly on endogenous and foreign promoters, and to show that Bmp5 control elements are capable of rescuing phenotypic effects of a Bmp5 deficiency. This rapid approach has identified new Bmp5 control regions responsible for controlling the development of specific anatomical structures in the vertebrate skeleton. A similar approach may be useful for studying complex control regions surrounding many other genes important in embryonic development and human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of β-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatic mutation accumulation has been implicated as a major cause of cancer and aging. By using a transgenic mouse model with a chromosomally integrated lacZ reporter gene, mutational spectra were characterized at young and old age in two organs greatly differing in proliferative activity, i.e., the heart and small intestine. At young age the spectra were nearly identical, mainly consisting of G·C to A·T transitions and 1-bp deletions. At old age, however, distinct patterns of mutations had developed. In small intestine, only point mutations were found to accumulate, including G·C to T·A, G·C to C·G, and A·T to C·G transversions and G·C to A·T transitions. In contrast, in heart about half of the accumulated mutations appeared to be large genome rearrangements, involving up to 34 centimorgans of chromosomal DNA. Virtually all other mutations accumulating in the heart appeared to be G·C to A·T transitions at CpG sites. These results suggest that distinct mechanisms lead to organ-specific genome deterioration and dysfunction at old age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translation inhibitors such as chloramphenicol in prokaryotes or cycloheximide in eukaryotes stabilize many or most cellular mRNAs. In Escherichia coli, this stabilization is ascribed generally to the shielding of mRNAs by stalled ribosomes. To evaluate this interpretation, we examine here how inhibitors affect the stabilities of two untranslated RNAs, i.e., an engineered lacZ mRNA lacking a ribosome binding site, and a small regulatory RNA, RNAI. Whether they block elongation or initiation, all translation inhibitors tested stabilized these RNAs, indicating that stabilization does not necessarily reflect changes in packing or activity of translating ribosomes. Moreover, both the initial RNase E-dependent cleavage of RNAI and lacZ mRNA and the subsequent attack of RNAI by polynucleotide phosphorylase and poly(A)-polymerase were slowed. Among various possible mechanisms for this stabilization, we discuss in particular a passive model. When translation is blocked, rRNA synthesis is known to increase severalfold and rRNA becomes unstable. Meanwhile, the pools of RNase E and polynucleotide phosphorylase, which, in growing cells, are limited because these RNases autoregulate their own synthesis, cannot expand. The processing/degradation of newly synthesized rRNA would then titrate these RNases, causing bulk mRNA stabilization.