78 resultados para irregularities in proceeding by plaintiff
Resumo:
All-trans and 9-cis retinoic acids (RA) signals are transduced by retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers that act as functional units controlling the transcription of RA-responsive genes. With the aim of elucidating the underlying molecular mechanisms, we have developed an in vitro transcription system using a chromatin template made up of a minimal promoter and a direct repeat with 5-spacing-based RA response element. RARα and RXRα were expressed in and purified from baculovirus-infected Sf9 cells, and transcription was carried out by using naked DNA or chromatin templates. Transcription from naked templates was not affected by the presence of RA and/or RAR/RXR heterodimers. In contrast, very little transcription occurred from chromatin templates in the absence of RA or RAR/RXR heterodimers whereas their addition resulted in a dosage-dependent stimulation of transcription that never exceeded that occurring on naked DNA templates. Most importantly, the addition of synthetic agonistic or antagonistic retinoids to the chromatin transcription system mimicked their stimulatory or inhibitory action in vivo, and activation by a RXR-specific retinoid was subordinated to the binding of an agonist ligand to the RAR partner. Moreover, the addition of the p300 coactivator generated a synergistic enhancement of transcription. Thus, the dissection of this transcription system ultimately should lead to the elucidation of the molecular mechanisms by which RAR/RXR heterodimers control transcription in a ligand-dependent manner.
Resumo:
Heparin has been used as a clinical anticoagulant for more than 50 years, making it one of the most effective pharmacological agents known. Much of heparin's activity can be traced to its ability to bind antithrombin III (AT-III). Low molecular weight heparin (LMWH), derived from heparin by its controlled breakdown, maintains much of the antithrombotic activity of heparin without many of the serious side effects. The clinical significance of LMWH has highlighted the need to understand and develop chemical or enzymatic means to generate it. The primary enzymatic tools used for the production of LMWH are the heparinases from Flavobacterium heparinum, specifically heparinases I and II. Using pentasaccharide and hexasaccharide model compounds, we show that heparinases I and II, but not heparinase III, cleave the AT-III binding site, leaving only a partially intact site. Furthermore, we show herein that glucosamine 3-O sulfation at the reducing end of a glycosidic linkage imparts resistance to heparinase I, II, and III cleavage. Finally, we examine the biological and pharmacological consequences of a heparin oligosaccharide that contains only a partial AT-III binding site. We show that such an oligosaccharide lacks some of the functional attributes of heparin- and heparan sulfate-like glycosaminoglycans containing an intact AT-III site.
Resumo:
Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.
Resumo:
The antitumoral effects that follow the local delivery of the N-terminal fragment of human plasminogen (angiostatin K3) have been studied in two xenograft murine models. Angiostatin delivery was achieved by a defective adenovirus expressing a secretable angiostatin K3 molecule from the cytomegalovirus promoter (AdK3). In in vitro studies, AdK3 selectively inhibited endothelial cell proliferation and disrupted the G2/M transition induced by M-phase-promoting factors. AdK3-infected endothelial cells showed a marked mitosis arrest that correlated with the down-regulation of the M-phase phosphoproteins. A single intratumoral injection of AdK3 into preestablished rat C6 glioma or human MDA-MB-231 breast carcinoma grown in athymic mice was followed by a significant arrest of tumor growth, which was associated with a suppression of neovascularization within and at the vicinity of the tumors. AdK3 therapy also induced a 10-fold increase in apoptotic tumor cells as compared with a control adenovirus. Furthermore, we showed that systemic injection of AdK3 delayed C6 tumor establishment and growth, confirming that angiostatin can function in a paracrin manner. Our data support the concept that targeted antiangiogenesis, using adenovirus-mediated gene transfer, represents a promising alternative strategy for delivering antiangiogenic factors as their bolus injections present unsolved pharmacological problems.
Resumo:
A deranged expression of MHC class I glycoproteins, characteristic of a variety of malignancies, contributes to the ability of cancer to avoid destruction by T cell-mediated immunity. An abrogation of the metastatic capacity of B16 melanoma cells has been achieved by transfecting an MHC class I-encoding vector into class I-deficient B16 melanoma clones [Gorelik, E., Kim, M., Duty, L. & Galili, U. (1993) Clin. Exp. Metastasis 11, 439–452]. We report here that the deranged expression of class I molecules by B16 melanoma cells is more than a mere acquisition of the capacity to escape immune recognition. Namely, cells of the B16 melanoma prompted splenic lymphocytes to commit death after coculture. However, a class I-expressing and nonmetastatic CL8-2 clone was found to be less potent as an inducer of apoptosis than class I-deficient and metastatic BL9 and BL12 clones. Both Thy1.2+ and Thy1.2− splenocytes underwent cell death when exposed to the class I-deficient BL9 clone. A proportion of CD4+ and CD8+ cells among splenocytes exposed to the BL9 clone was lower than that observed in a coculture with cells of the CL8-2 clone. Consistently, none of the melanoma clones studied produced a ligand to the FAS receptor (FAS-L). Thus, our results provide evidence that (i) the production of FAS-L may not be the sole mechanism by which malignant cells induce apoptosis in immunocytes, and (ii) absence of MHC class I glycoproteins plays an important role in preventing the elimination of potential effector immunocytes by tumor cells.
Resumo:
Isotretinoin (13-cis retinoic acid) is frequently prescribed for severe acne [Peck, G. L., Olsen, T. G., Yoder, F. W., Strauss, J. S., Downing, D. T., Pandya, M., Butkus, D. & Arnaud-Battandier, J. (1979) N. Engl. J. Med. 300, 329–333] but can impair night vision [Fraunfelder, F. T., LaBraico, J. M. & Meyer, S. M. (1985) Am. J. Ophthalmol. 100, 534–537] shortly after the beginning of therapy [Shulman, S. R. (1989) Am. J. Public Health 79, 1565–1568]. As rod photoreceptors are responsible for night vision, we administered isotretinoin to rats to learn whether night blindness resulted from rod cell death or from rod functional impairment. High-dose isotretinoin was given daily for 2 months and produced systemic toxicity, but this caused no histological loss of rod photoreceptors, and rod-driven electroretinogram amplitudes were normal after prolonged dark adaptation. Additional studies showed, however, that even a single dose of isotretinoin slowed the recovery of rod signaling after exposure to an intense bleaching light, and that rhodopsin regeneration was markedly slowed. When only a single dose was given, rod function recovered to normal within several days. Rods and cones both showed slow recovery from bleach after isotretinoin in rats and in mice. HPLC analysis of ocular retinoids after isotretinoin and an intense bleach showed decreased levels of rhodopsin chromophore, 11-cis retinal, and the accumulation of the biosynthetic intermediates, 11-cis and all-trans retinyl esters. Isotretinoin was also found to protect rat photoreceptors from light-induced damage, suggesting that strategies of altering retinoid cycling may have therapeutic implications for some forms of retinal and macular degeneration.
Resumo:
We have systematically characterized gene expression patterns in 49 adult and embryonic mouse tissues by using cDNA microarrays with 18,816 mouse cDNAs. Cluster analysis defined sets of genes that were expressed ubiquitously or in similar groups of tissues such as digestive organs and muscle. Clustering of expression profiles was observed in embryonic brain, postnatal cerebellum, and adult olfactory bulb, reflecting similarities in neurogenesis and remodeling. Finally, clustering genes coding for known enzymes into 78 metabolic pathways revealed a surprising coordination of expression within each pathway among different tissues. On the other hand, a more detailed examination of glycolysis revealed tissue-specific differences in profiles of key regulatory enzymes. Thus, by surveying global gene expression by using microarrays with a large number of elements, we provide insights into the commonality and diversity of pathways responsible for the development and maintenance of the mammalian body plan.
Resumo:
Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.
Resumo:
Measurement of 8-hydroxy-2′-deoxyguanosine (8-OH-dGuo) in DNA by high-performance liquid chromatography/mass spectrometry (LC/MS) was studied. A methodology was developed for separation by LC of 8-OH-dGuo from intact and modified nucleosides in DNA hydrolyzed by a combination of four enzymes: DNase I, phosphodiesterases I and II and alkaline phosphatase. The atmospheric pressure ionization-electrospray process was used for mass spectral measurements. A stable isotope-labeled analog of 8-OH-dGuo was used as an internal standard for quantification by isotope-dilution MS (IDMS). Results showed that LC/IDMS with selected ion-monitoring (SIM) is well suited for identification and quantification of 8-OH-dGuo in DNA at background levels and in damaged DNA. The sensitivity level of LC/IDMS-SIM was found to be comparable to that reported previously using LC-tandem MS (LC/MS/MS). It was found that approximately five lesions per 106 DNA bases can be detected using amounts of DNA as low as 2 µg. The results also suggest that this lesion may be quantified in DNA at levels of one lesion per 106 DNA bases, or even lower, when more DNA is used. Up to 50 µg of DNA per injection were used without adversely affecting the measurements. Gas chromatography/isotope-dilution MS with selected-ion monitoring (GC/IDMS-SIM) was also used to measure this compound in DNA following its removal from DNA by acidic hydrolysis or by hydrolysis with Escherichia coli Fpg protein. The background levels obtained by LC/IDMS-SIM and GC/IDMS-SIM were almost identical. Calf thymus DNA and DNA isolated from cultured HeLa cells were used for this purpose. This indicates that these two techniques can provide similar results in terms of the measurement of 8-OH-dGuo in DNA. In addition, DNA in buffered aqueous solution was damaged by ionizing radiation at different radiation doses and analyzed by LC/IDMS-SIM and GC/IDMS-SIM. Again, similar results were obtained by the two techniques. The sensitivity of GC/MS-SIM for 7,8-dihydro-8-oxoguanine was also examined and found to be much greater than that of LC/MS-SIM and the reported sensitivity of LC/MS/MS for 8-OH-dGuo. Taken together, the results unequivocally show that LC/IDMS-SIM is well suited for sensitive and accurate measurement of 8-OH-dGuo in DNA and that both LC/IDMS-SIM and GC/IDMS-SIM can provide similar results.
Resumo:
GD25 cells lacking β1 integrins or expressing β1A with mutations of conserved cytoplasmic tyrosines (Y783, Y795) to phenylalanine have poor directed migration to platelet-derived growth factor or lysophosphatidic acid when compared with GD25 cells expressing wild-type β1A. We studied the effects of v-src on these cells. Transformation with v-src caused tyrosine and serine phosphorylation of wild-type β1A but not of Y783/795F doubly mutated β1A. v-src-transformed cells had rounded and/or fusiform morphology and poor assembly of fibronectin matrix. Adhesion to fibronectin or laminin and coupling of focal contacts to actin-containing cytoskeleton were preserved in transformed Y783/795F cells but lost on transformation when β1A was wild type. Transformed Y783/795F cells also retained ability, albeit limited, to migrate across filters, whereas transformed cells with wild-type β1A were unable to transverse filters. Studies of single tyrosine mutants showed that the more important tyrosine for retaining ability to adhere, assemble focal contacts, and migrate is Y783. These results suggest that overactive phosphorylation of cytoplasmic residues of β1A, particularly Y783, accounts in part for the phenotype of v-src-transformed cells.
Resumo:
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red light, conditions that induce strong shade-avoidance reactions in wild-type plants. This indicates that phyB plays an important role in the control of shade avoidance. In Arabidopsis phyB and phyD are the products of a recently duplicated gene and share approximately 80% identity. We investigated the role played by phyD in shade avoidance by analyzing the responses of phyD-deficient mutants. Compared with the monogenic phyB mutant, the phyB-phyD double mutant flowers early and has a smaller leaf area, phenotypes that are characteristic of shade avoidance. Furthermore, compared with the monogenic phyB mutant, the phyB-phyD double mutant shows a more attenuated response to a reduced R/FR for these responses. Compared with the phyA-phyB double mutant, the phyA-phyB-phyD triple mutant has elongated petioles and displays an enhanced elongation of internodes in response to end-of-day far-red light. These characteristics indicate that phyD acts in the shade-avoidance syndrome by controlling flowering time and leaf area and that phyC and/or phyE also play a role.
Resumo:
Copy-choice RNA recombination occurs during viral RNA synthesis when the viral transcription complex switches templates. We demonstrate that RNA-dependent RNA polymerase from bovine viral diarrhea virus and the replicases from three plant-infecting RNA viruses can produce easily detectable recombination products in vitro by switching templates during elongative RNA synthesis. Template sequence and/or structure, and NTP availability affected the frequency of template switch by the transcription complex. Our results provide biochemical support for copy-choice recombination and establish assays for mechanistic analyses of intermolecular RNA recombination in vitro.
Resumo:
In vivo assessment of gene expression is desirable to obtain information on the extent and duration of transduction of tissue after gene delivery. We have developed an in vivo, potentially noninvasive, method for detecting virally mediated gene transfer to the liver. The method employs an adenoviral vector carrying the gene for the brain isozyme of murine creatine kinase (CK-B), an ATP-buffering enzyme expressed mainly in muscle and brain but absent from liver, kidney, and pancreas. Gene expression was monitored by 31P magnetic resonance spectroscopy (MRS) using the product of the CK enzymatic reaction, phosphocreatine, as an indicator of transfection. The vector was administered into nude mice by tail vein injection, and exogenous creatine was administered in the drinking water and by i.p. injection of 2% creatine solution before 31P MRS examination, which was performed on surgically exposed livers. A phosphocreatine resonance was detected in livers of mice injected with the vector and was absent from livers of control animals. CK expression was confirmed in the injected animals by Western blot analysis, enzymatic assays, and immunofluorescence measurements. We conclude that the syngeneic enzyme CK can be used as a marker gene for in vivo monitoring of gene expression after virally mediated gene transfer to the liver.
Resumo:
Extracellular invertase mediates phloem unloading via an apoplastic pathway. The gene encoding isoenzyme Nin88 from tobacco was cloned and shown to be characterized by a specific spatial and temporal expression pattern. Tissue-specific antisense repression of Nin88 under control of the corresponding promoter in tobacco results in a block during early stages of pollen development, thus, causing male sterility. This result demonstrates a critical role of extracellular invertase in pollen development and strongly supports the essential function of extracellular sucrose cleavage for supplying carbohydrates to sink tissues via the apoplast. The specific interference with phloem unloading, the sugar status, and metabolic signaling during pollen formation will be a potentially valuable approach to induce male sterility in various crop species for hybrid seed production.