21 resultados para interictal spikes
Resumo:
The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.
Resumo:
Antibodies that bind well to the envelope spikes of immunodeficiency viruses such as HIV type 1 (HIV-1) and simian immunodeficiency virus (SIV) can offer protection or benefit if present at appropriate concentrations before viral exposure. The challenge in antibody-based HIV-1 vaccine design is to elicit such antibodies to the viruses involved in transmission in humans (primary viruses). At least two major obstacles exist. The first is that very little of the envelope spike surface of primary viruses appears accessible for antibody binding (low antigenicity), probably because of oligomerization of the constituent proteins and a high degree of glycosylation of one of the proteins. The second is that the mature oligomer constituting the spikes appears to stimulate only weak antibody responses (low immunogenicity). Viral variation is another possible obstacle that appears to present fewer problems than anticipated. Vaccine design should focus on presentation of an intact mature oligomer, increasing the immunogenicity of the oligomer and learning from the antibodies available that potently neutralize primary viruses.
Resumo:
The membrane excitability of cholinergic (starburst) amacrine cells was studied in the rabbit retina during postnatal development. Whole-cell patch-clamp recordings were made from 110 displaced starburst cells in a thin retina] slice preparation of rabbits between postnatal days P1 and P56 old. We report that displaced starburst cells undergo a dramatic transition from spiking to nonspiking, caused by a loss of voltage-gated Na currents. This change in membrane excitability occurred just after eye opening (P10), such that all of the starburst cells tested before eye opening had conspicuous tetrodotoxin-sensitive Na currents and action potentials, but none tested after the first 3 postnatal weeks had detectable Na currents or spikes. Our results suggest that starburst cells use action potentials transiently during development and probably play a functional role in visual development. These cells then cease to spike as the retina matures, presumably consistent with their role in visual processing in the mature retina.
Resumo:
Amperometry at a carbon fiber microelectrode modified with a composite of ruthenium oxide and cyanoruthenate was used to monitor chemical secretions of single pancreatic beta cells from rats and humans. When the insulin secretagogues glucose, tolbutamide, and K+ were applied to the cell, a series of randomly occurring current spikes was observed. The current spikes were shown to be due to the detection of chemical substances secreted from the cell. Chromatography showed that the primary secreted substance detected by the electrode was insulin. The current spikes were strongly dependent on external Ca2+, had an average area that was independent of the stimulation method, and had an area distribution which corresponded to the distribution of vesicle sizes in beta cells. It was concluded that the spikes were due to the detection of concentration pulses of insulin secreted by exocytosis.
Resumo:
Amperometry has been used for real-time electrochemical detection of the quantal release of catecholamines and indolamines from secretory granules in chromaffin and mast cells. Using improved-sensitivity carbon fiber electrodes, we now report the detection of quantal catecholamine release at the surface of somas of neonatal superior cervical ganglion neurons that are studded with axon varicosities containing synaptic vesicles. Local application of a bath solution containing high K+ or black widow spider venom, each of which greatly enhances spontaneous quantal release of transmitter at synapses, evoked barrages of small-amplitude (2-20 pA), short-duration (0.5-2 ms) amperometric quantal "spikes". The median spike charge was calculated as 11.3 fC. This figure corresponds to 3.5 x 10(4) catecholamine molecules per quantum of release, or approximately 1% that evoked by the discharge of the contents of a chromaffin granule.
Resumo:
The perception of a briefly presented shape is strongly impaired when it is followed by another pattern, a phenomenon called backward masking. We found that the vast majority of a sample of shape-selective neurons in the macaque inferior temporal cortex respond selectively to backward-masked shapes, although these shapes could not be discriminated by human and monkey subjects. However, this selective response was brief, since it was either interrupted by the mask or overridden by a response to the mask itself. We show that reliable discrimination of briefly presented shapes by single neurons depends on the temporal integration of the response. Presentation of the mask, however, reduces the number of spikes available for integration, explaining backward masking. These results also provide direct neurophysiological evidence for the "interruption theory" of backward masking.