23 resultados para indium segregation
Resumo:
In most organisms homologous recombination is vital for the proper segregation of chromosomes during meiosis, the formation of haploid sex cells from diploid precursors. This review compares meiotic recombination and chromosome segregation in the fission yeast Schizosaccharomyces pombe and the distantly related budding yeast Saccharomyces cerevisiae, two especially tractable microorganisms. Certain features, such as the occurrence of DNA breaks associated with recombination, appear similar, suggesting that these features may be common in eukaryotes. Other features, such as the role of these breaks and the ability of chromosomes to segregate faithfully in the absence of recombination, appear different, suggesting multiple solutions to the problems faced in meiosis.
Resumo:
Proteolysis of short N alpha-protected peptide substrates bound to polyoxyethylene-polystyrene beads releases selectively free amino sites in the enzyme-accessible "surface" area. The substantial majority of functional sites in the "interior" of the polymeric support are not reached by the enzyme and remain uncleaved (protected). Subsequent synthesis with two classes of orthogonal protecting groups-N alpha-tert-butyloxycarbonyl (Boc) and N alpha-9-fluorenylmethyloxy-carbonyl (Fmoc)-allows generation of two structures on the same bead. The surface structure is available for receptor interactions, whereas the corresponding interior structure is used for coding. Coding structures are usually readily sequenceable peptides. This "shaving" methodology was illustrated by the preparation of a peptide-encoded model peptide combinatorial library containing 1.0 x 10(5) members at approximately 6-fold degeneracy. From this single library, good ligands were selected for three different receptors: anti-beta-endorphin anti-body, streptavidin, and thrombin, and the binding structures were deduced correctly by sequencing the coding peptides present on the same beads.
Resumo:
The four small micromeres of the sea urchin embryo contribute only to the coelomic sacs, which produce major components of the adult body plan during postembryonic development. To test the proposition that the small micromeres are the definitive primordial germ cell lineage of the sea urchin, we deleted their 4th cleavage parents, and raised the deleted embryos through larval life and metamorphosis to sexual maturity. Almost all of the experimental animals produced functional gametes, excluding the possibility that the germ cell lineage arises exclusively and obligatorily from descendants of the small micromeres; rather, the germ cell lineage arises during the postembryonic development of the rudiment. A survey of the literature indicates that there is no known case of an embryonic primordial germ cell lineage in a bilaterian species that displays maximal indirect development.
Resumo:
The method of Matsumoto and Ohta [Matsumoto, K. & Ohta, T. (1992) Chromosoma 102, 60-65; Matsumoto, K. & Ohta, T. (1995) Mutat. Res. 326, 93-98] to induce large numbers of endoreduplicated Chinese hamster ovary cells has now been coupled with the fluorescence-plus-Giemsa method of Perry and Wolff [Perry, P. & Wolff, S. (1974) Nature (London) 251, 156-158] to produce harlequin endoreduplicated chromosomes that after the third round of DNA replication are composed of a chromosome with a light chromatid and a dark chromatid in close apposition to its sister chromosome containing two light chromatids. Unless the pattern is disrupted by sister chromatid exchange (SCE), the dark chromatid is always in the center, so that the order of the chromatids is light-dark light-light. The advent of this method, which permits the observation of SCEs in endoreduplicated cells, makes it possible to determine with great ease in which cell cycle an SCE occurred. This now allows us to approach several vexing questions about the induction of SCEs (genetic damage and its repair) after exposure to various types of mutagenic carcinogens. The present experiments have allowed us to observe how many cell cycles various types of lesions that are induced in DNA by a crosslinking agent, an alkylating agent, or ionizing radiation, and that are responsible for the induction of SCEs, persist before being repaired and thus lose their ability to inflict genetic damage. Other experiments with various types of mutagenic carcinogens and various types of cell lines that have defects in different DNA repair processes, such as mismatch repair, excision repair, crosslink repair, and DNA-strand-break repair, can now be carried out to determine the role of these types of repair in removing specific types of lesions.
Resumo:
Homologous chromosomes pair, and then migrate to opposite poles of the spindle at meiosis I. In most eukaryotic organisms, reciprocal recombinations (crossovers) between the homologs are critical to the success of this process. Individuals with defects in meiotic recombination typically produce high levels of aneuploid gametes and exhibit low fertility or are sterile. The experiments described here were designed to test whether different crossovers are equally able to contribute to the fidelity of meiotic chromosome segregation in yeast. These experiments were performed with model chromosomes with which it was possible to control and measure the distributions of meiotic crossovers in wild-type cells. Physical and genetic approaches were used to map crossover positions on model chromosomes and to correlate crossover position with meiotic segregation behavior. The results show that crossovers at different chromosomal positions have different abilities to enhance the fidelity of meiotic segregation.
Resumo:
Human CAS cDNA contains a 971-aa open reading frame that is homologous to the essential yeast gene CSE1. CSE1 is involved in chromosome segregation and is necessary for B-type cyclin degradation in mitosis. Using antibodies to CAS, it was shown that CAS levels are high in proliferating and low in nonproliferating cells. Here we describe the distribution of CAS in cells and tissues analyzed with antibodies against CAS. CAS is an approximately 100-kDa protein present in the cytoplasm of proliferating cells at levels between 2 x 10(5) and 1 x 10(6) molecules per cell. The intracellular distribution of CAS resembles that of tubulin. In interphase cells, anti-CAS antibody shows microtubule-like patterns and in mitotic cells it labels the mitotic spindle. CAS is removed from microtubules by mild detergent treatment (cytoskeleton preparations) and in vincristine- or taxol-treated cells. CAS is diffusely distributed in the cytoplasm with only traces present in tubulin paracrystals or bundles. Thus, CAS appears to be associated with but not to be an integral part of microtubules. Immunohistochemical staining of frozen tissues shows elevated amounts of CAS in proliferating cells such as testicular spermatogonia and cells in the basal layer cells of the colon. CAS was also concentrated in the respiratory epithelium of the trachea and in axons and Purkinje cells in the cerebellum. These cells contain many microtubules. The cellular location of CAS is consistent with an important role in cell division as well as in ciliary movement and vesicular transport.
Resumo:
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.
Resumo:
We recently isolated human cDNA fragments that render MCF-7 breast cancer cells resistant to cell death caused by Pseudomonas exotoxin, Pseudomonas exotoxin-derived immunotoxins, diphtheria toxin, and tumor necrosis factor. We report here that one of these fragments is an antisense fragment of a gene homologous to the essential yeast chromosome segregation gene CSE1. Cloning and analysis of the full-length cDNA of the human CSE1 homologue, which we name CAS for cellular apoptosis susceptibility gene, reveals a protein coding region with similar length (971 amino acids for CAS, 960 amino acids for CSE1) and 59% overall protein homology to the yeast CSE1 protein. The conservation of this gene indicates it has an important function in human cells consistent with the essential role of CSE1 in yeast. CAS is highly expressed in human tumor cell lines and in human testis and fetal liver, tissues that contain actively dividing cells. Furthermore, CAS expression increases when resting human fibroblasts are induced to proliferate and decreases when they are growth-arrested. Thus, CAS appears to play an important role in both toxin and tumor necrosis factor-mediated cell death, as well as in cell proliferation.