42 resultados para homologous sequence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PALI (release 1.2) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of homologous protein domains in various families. The data set of homologous protein structures has been derived by consulting the SCOP database (release 1.50) and the data set comprises 604 families of homologous proteins involving 2739 protein domain structures with each family made up of at least two members. Each member in a family has been structurally aligned with every other member in the same family (pairwise alignment) and all the members in the family are also aligned using simultaneous super­position (multiple alignment). The structural alignments are performed largely automatically, with manual interventions especially in the cases of distantly related proteins, using the program STAMP (version 4.2). Every family is also associated with two dendrograms, calculated using PHYLIP (version 3.5), one based on a structural dissimilarity metric defined for every pairwise alignment and the other based on similarity of topologically equivalent residues. These dendrograms enable easy comparison of sequence and structure-based relationships among the members in a family. Structure-based alignments with the details of structural and sequence similarities, superposed coordinate sets and dendrograms can be accessed conveniently using a web interface. The database can be queried for protein pairs with sequence or structural similarities falling within a specified range. Thus PALI forms a useful resource to help in analysing the relationship between sequence and structure variation at a given level of sequence similarity. PALI also contains over 653 ‘orphans’ (single member families). Using the web interface involving PSI_BLAST and PHYLIP it is possible to associate the sequence of a new protein with one of the families in PALI and generate a phylogenetic tree combining the query sequence and proteins of known 3-D structure. The database with the web interfaced search and dendrogram generation tools can be accessed at http://pa uling.mbu.iisc.ernet.in/~pali.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

V-type proton-translocating ATPases (V-ATPases) (EC 3.6.1.3) are electrogenic proton pumps involved in acidification of endomembrane compartments in all eukaryotic cells. V-ATPases from various species consist of 8 to 12 polypeptide subunits arranged into an integral membrane proton pore sector (V0) and a peripherally associated catalytic sector (V1). Several V-ATPase subunits are functionally and structurally conserved among all species examined. In yeast, a 36-kD peripheral subunit encoded by the yeast (Saccharomyces cerevisiae) VMA6 gene (Vma6p) is required for stable assembly of the V0 sector as well as for V1 attachment. Vma6p has been characterized as a nonintegrally associated V0 subunit. A high degree of sequence similarity among Vma6p homologs from animal and fungal species suggests that this subunit has a conserved role in V-ATPase function. We have characterized a novel Vma6p homolog from red beet (Beta vulgaris) tonoplast membranes. A 44-kD polypeptide cofractionated with V-ATPase upon gel-filtration chromatography of detergent-solubilized tonoplast membranes and was specifically cross-reactive with anti-Vma6p polyclonal antibodies. The 44-kD polypeptide was dissociated from isolated tonoplast preparations by mild chaotropic agents and thus appeared to be nonintegrally associated with the membrane. The putative 44-kD homolog appears to be structurally similar to yeast Vma6p and occupies a similar position within the holoenzyme complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologous sense suppression of a gene encoding lignin pathway caffeic acid O-methyltransferase (CAOMT) in the xylem of quaking aspen (Populus tremuloides Michx.) resulted in transgenic plants exhibiting novel phenotypes with either mottled or complete red-brown coloration in their woody stems. These phenotypes appeared in all independent transgenic lines regenerated with a sense CAOMT construct but were absent from all plants produced with antisense CAOMT. The CAOMT sense transgene expression was undetectable, and the endogenous CAOMT transcript levels and enzyme activity were reduced in the xylem of some transgenic lines. In contrast, the sense transgene conferred overexpression of CAOMT and significant CAOMT activity in all of the transgenic plants' leaves and sclerenchyma, where normally the expression of the endogenous CAOMT gene is negligible. Thus, our results support the notion that the occurrence of sense cosuppression depends on the degree of sequence homology and endogene expression. Furthermore, the suppression of CAOMT in the xylem resulted in the incorporation of a higher amount of coniferyl aldehyde residues into the lignin in the wood of the sense plants. Characterization of the lignins isolated from these transgenic plants revealed that a high amount of coniferyl aldehyde is the origin of the red-brown coloration—a phenotype correlated with CAOMT-deficient maize (Zea mays L.) brown-midrib mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A typical homing endonuclease initiates mobility of its group I intron by recognizing DNA both upstream and downstream of the intron insertion site of intronless alleles, preventing the endonuclease from binding and cleaving its own intron-containing allele. Here, we describe a GIY-YIG family homing endonuclease, I-BmoI, that possesses an unusual recognition sequence, encompassing 1 base pair upstream but 38 base pairs downstream of the intron insertion site. I-BmoI binds intron-containing and intronless substrates with equal affinity but can nevertheless discriminate between the two for cleavage. I-BmoI is encoded by a group I intron that interrupts the thymidylate synthase (TS) gene (thyA) of Bacillus mojavensis s87-18. This intron resembles one inserted 21 nucleotides further downstream in a homologous TS gene (td) of Escherichia coli phage T4. I-TevI, the T4 td intron-encoded GIY-YIG endonuclease, is very similar to I-BmoI, but each endonuclease gene is inserted within a different position of its respective intron. Remarkably, I-TevI and I-BmoI bind a homologous stretch of TS-encoding DNA and cleave their intronless substrates in very similar positions. Our results suggest that each endonuclease has independently evolved the ability to distinguish intron-containing from intronless alleles while maintaining the same conserved recognition sequence centered on DNA-encoding active site residues of TS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA synthesis is an accurate and very processive phenomenon; nevertheless, replication fork progression on chromosomes can be impeded by DNA lesions, DNA secondary structures, or DNA-bound proteins. Elements interfering with the progression of replication forks have been reported to induce rearrangements and/or render homologous recombination essential for viability, in all organisms from bacteria to human. Arrested replication forks may be the target of nucleases, thereby providing a substrate for double-strand break repair enzyme. For example in bacteria, direct fork breakage was proposed to occur at replication forks blocked by a bona fide replication terminator sequence, a specific site that arrests bacterial chromosome replication. Alternatively, an arrested replication fork may be transformed into a recombination substrate by reversal of the forked structures. In reversed forks, the last duplicated portions of the template strands reanneal, allowing the newly synthesized strands to pair. In bacteria, this reaction was proposed to occur in replication mutants, in which fork arrest is caused by a defect in a replication protein, and in UV irradiated cells. Recent studies suggest that it may also occur in eukaryote organisms. We will review here observations that link replication hindrance with DNA rearrangements and the possible underlying molecular processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic instability can be induced by unusual DNA structures and sequence repeats. We have previously demonstrated that a large palindrome in the mouse germ line derived from transgene integration is extremely unstable and undergoes stabilizing rearrangements at high frequency, often through deletions that produce asymmetry. We have now characterized other palindrome rearrangements that arise from complex homologous recombination events. The structure of the recombinants is consistent with homologous recombination occurring by a noncrossover gene conversion mechanism in which a break induced in the palindrome promotes homologous strand invasion and repair synthesis, similar to mitotic break repair events reported in mammalian cells. Some of the homologous recombination events led to expansion in the size of the palindromic locus, which in the extreme case more than doubled the number of repeats. These results may have implications for instability observed at naturally occurring palindromic or quasipalindromic sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptomyces lavendulae produces complestatin, a cyclic peptide natural product that antagonizes pharmacologically relevant protein–protein interactions including formation of the C4b,2b complex in the complement cascade and gp120-CD4 binding in the HIV life cycle. Complestatin, a member of the vancomycin group of natural products, consists of an α-ketoacyl hexapeptide backbone modified by oxidative phenolic couplings and halogenations. The entire complestatin biosynthetic and regulatory gene cluster spanning ca. 50 kb was cloned and sequenced. It consisted of 16 ORFs, encoding proteins homologous to nonribosomal peptide synthetases, cytochrome P450-related oxidases, ferredoxins, nonheme halogenases, four enzymes involved in 4-hydroxyphenylglycine (Hpg) biosynthesis, transcriptional regulators, and ABC transporters. The nonribosomal peptide synthetase consisted of a priming module, six extending modules, and a terminal thioesterase; their arrangement and domain content was entirely consistent with functions required for the biosynthesis of a heptapeptide or α-ketoacyl hexapeptide backbone. Two oxidase genes were proposed to be responsible for the construction of the unique aryl-ether-aryl-aryl linkage on the linear heptapeptide intermediate. Hpg, 3,5-dichloro-Hpg, and 3,5-dichloro-hydroxybenzoylformate are unusual building blocks that repesent five of the seven requisite monomers in the complestatin peptide. Heterologous expression and biochemical analysis of 4-hydroxyphenylglycine transaminon confirmed its role as an aminotransferase responsible for formation of all three precursors. The close similarity but functional divergence between complestatin and chloroeremomycin biosynthetic genes also presents a unique opportunity for the construction of hybrid vancomycin-type antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two putative ribonucleases have been isolated from the secondary granules of mouse eosinophils. Degenerate oligonucleotide primers inferred from peptide sequence data were used in reverse transcriptase-PCR reactions of bone marrow-derived cDNA. The resulting PCR product was used to screen a C57BL/6J bone marrow cDNA library, and comparisons of representative clones showed that these genes and encoded proteins are highly homologous (96% identity at the nucleotide level; 92/94% identical/similar at the amino acid level). The mouse proteins are only weakly homologous (approximately 50% amino acid identity) with the human eosinophil-associated ribonucleases (i.e., eosinophil-derived neurotoxin and eosinophil cationic protein) and show no sequence bias toward either human protein. Phylogenetic analyses established that the human and mouse loci shared an ancestral gene, but that independent duplication events have occurred since the divergence of primates and rodents. The duplication event generating the mouse genes was estimated to have occurred < 5 x 10(6) years ago (versus 30 to 40 x 10(6) years ago in primates). The identification of independent duplication events in two extant mammalian orders suggests a selective advantage to having multiple eosinophil granule ribonucleases. Southern blot analyses in the mouse demonstrated the existence of three additional highly homologous genes (i.e., five genes total) as well as several more divergent family members. The potential significance of this observation is the implication of a larger gene subfamily in primates (i.e., humans).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins are major two-way signaling receptors responsible for the attachment of cells to the extracellular matrix and for cell-cell interactions that underlie immune responses, tumor metastasis, and progression of atherosclerosis and thrombosis. We report the structure-function analysis of the cytoplasmic tail of integrin beta 3 (glycoprotein IIla) based on the cellular import of synthetic peptide analogs of this region. Among the four overlapping cell-permeable peptides, only the peptide carrying residues 747-762 of the carboxyl-terminal segment of integrin beta 3 inhibited adhesion of human erythroleukemia (HEL) cells and of human endothelial cells (ECV) 304 to immobilized fibrinogen mediated by integrin beta 3 heterodimers, alpha IIb beta 3, and alpha v beta 3, respectively. Inhibition of adhesion was integrin-specific because the cell-permeable beta 3 peptide (residues 747-762) did not inhibit adhesion of human fibroblasts mediated by integrin beta 1 heterodimers. Conversely, a cell-permeable peptide representing homologous portion of the integrin beta 1 cytoplasmic tail (residues 788-803) inhibited adhesion of human fibroblasts, whereas it was without effect on adhesion of HEL or ECV 304 cells. The cell-permeable integrin beta 3 peptide (residues 747-762) carrying a known loss-of-function mutation (Ser752Pro) responsible for the genetic disorder Glanzmann thrombasthenia Paris I did not inhibit cell adhesion of HEL or ECV 304 cells, whereas the beta 3 peptide carrying a Ser752Ala mutation was inhibitory. Although Ser752 is not essential, Tyr747 and Tyr759 form a functionally active tandem because conservative mutations Tyr747Phe or Tyr759Phe resulted in a nonfunctional cell permeable integrin beta 3 peptide. We propose that the carboxyl-terminal segment of the integrin beta 3 cytoplasmic tail spanning residues 747-762 constitutes a major intracellular cell adhesion regulatory domain (CARD) that modulates the interaction of integrin beta 3-expressing cells with immobilized fibrinogen. Import of cell-permeable peptides carrying this domain results in inhibition "from within" of the adhesive function of these integrins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (tRNA synthetases) of higher eukaryotes form a multiprotein complex. Sequence elements that are responsible for the protein assembly were searched by using a yeast two-hybrid system. Human cytoplasmic isoleucyl-tRNA synthetase is a component of the multi-tRNA synthetase complex and it contains a unique C-terminal appendix. This part of the protein was used as bait to identify an interacting protein from a HeLa cDNA library. The selected sequence represented the internal 317 amino acids of human bifunctional (glutamyl- and prolyl-) tRNA synthetase, which is also known to be a component of the complex. Both the C-terminal appendix of the isoleucyl-tRNA synthetase and the internal region of bifunctional tRNA synthetase comprise repeating sequence units, two repeats of about 90 amino acids, and three repeats of 57 amino acids, respectively. Each repeated motif of the two proteins was responsible for the interaction, but the stronger interaction was shown by the native structures containing multiple motifs. Interestingly, the N-terminal extension of human glycyl-tRNA synthetase containing a single motif homologous to those in the bifunctional tRNA synthetase also interacted with the C-terminal motif of the isoleucyl-tRNA synthetase although the enzyme is not a component of the complex. The data indicate that the multiplicity of the binding motif in the tRNA synthetases is necessary for enhancing the interaction strength and may be one of the determining factors for the tRNA synthetases to be involved in the formation of the multi-tRNA synthetase complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new members of the fibroblast growth factor (FGF) family, referred to as fibroblast growth factor homologous factors (FHFs), have been identified by a combination of random cDNA sequencing, data base searches, and degenerate PCR. Pairwise comparisons between the four FHFs show between 58% and 71% amino acid sequence identity, but each FHF shows less than 30% identity when compared with other FGFs. Like FGF-1 (acidic FGF) and FGF-2 (basic FGF), the FHFs lack a classical signal sequence and contain clusters of basic residues that can act as nuclear localization signals. In transiently transfected 293 cells FHF-1 accumulates in the nucleus and is not secreted. Each FHF is expressed in the developing and adult nervous systems, suggesting a role for this branch of the FGF family in nervous system development and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene recognition is one of the most important problems in computational molecular biology. Previous attempts to solve this problem were based on statistics, and applications of combinatorial methods for gene recognition were almost unexplored. Recent advances in large-scale cDNA sequencing open a way toward a new approach to gene recognition that uses previously sequenced genes as a clue for recognition of newly sequenced genes. This paper describes a spliced alignment algorithm and software tool that explores all possible exon assemblies in polynomial time and finds the multiexon structure with the best fit to a related protein. Unlike other existing methods, the algorithm successfully recognizes genes even in the case of short exons or exons with unusual codon usage; we also report correct assemblies for genes with more than 10 exons. On a test sample of human genes with known mammalian relatives, the average correlation between the predicted and actual proteins was 99%. The algorithm correctly reconstructed 87% of genes and the rare discrepancies between the predicted and real exon-intron structures were caused either by short (less than 5 amino acids) initial/terminal exons or by alternative splicing. Moreover, the algorithm predicts human genes reasonably well when the homologous protein is nonvertebrate or even prokaryotic. The surprisingly good performance of the method was confirmed by extensive simulations: in particular, with target proteins at 160 accepted point mutations (PAM) (25% similarity), the correlation between the predicted and actual genes was still as high as 95%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic studies of the protozoan parasite Plasmodium falciparum have been severely limited by the inability to introduce or modify genes. In this paper we describe a system of stable transfection of P. falciparum using a Toxoplasma gondii dihydrofolate reductase-thymidylate synthase gene, modified to confer resistance to pyrimethamine, as a selectable marker. This gene was placed under the transcriptional control of the P. falciparum calmodulin gene flanking sequences. Transfected parasites generally maintained plasmids episomally while under selection; however, parasite clones containing integrated forms of the plasmid were obtained. Integration occurred by both homologous and nonhomologous recombination. In addition to the flanking sequence of the P. falciparum calmodulin gene, the 5' sequences of the P. falciparum and P. chabaudi dihydrofolate reductase-thymidylate synthase genes were also shown to be transcriptionally active in P. falciparum. The minimal 5' sequence that possessed significant transcriptional activity was determined for each gene and short sequences containing important transcriptional control elements were identified. These sequences will provide considerable flexibility in the future construction of plasmid vectors to be used for the expression of foreign genes or for the deletion or modification of P. falciparum genes of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genomic double-strand breaks (DSBs) are key intermediates in recombination reactions of living organisms. We studied the repair of genomic DSBs by homologous sequences in plants. Tobacco plants containing a site for the highly specific restriction enzyme I-Sce I were cotransformed with Agrobacterium strains carrying sequences homologous to the transgene locus and, separately, containing the gene coding for the enzyme. We show that the induction of a DSB can increase the frequency of homologous recombination at a specific locus by up to two orders of magnitude. Analysis of the recombination products demonstrates that a DSB can be repaired via homologous recombination by at least two different but related pathways. In the major pathway, homologies on both sides of the DSB are used, analogous to the conservative DSB repair model originally proposed for meiotic recombination in yeast. Homologous recombination of the minor pathway is restricted to one side of the DSB as described by the nonconservative one-sided invasion model. The sequence of the recombination partners was absolutely conserved in two cases, whereas in a third case, a deletion of 14 bp had occurred, probably due to DNA polymerase slippage during the copy process. The induction of DSB breaks to enhance homologous recombination can be applied for a variety of approaches of plant genome manipulation.