18 resultados para higher order ambisonics
Resumo:
This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5′ untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5′ UTR that is 100% complementary to the 18S rRNA at nucleotides 1132–1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements.
Resumo:
The barn owl (Tyto alba) uses interaural time difference (ITD) cues to localize sounds in the horizontal plane. Low-order binaural auditory neurons with sharp frequency tuning act as narrow-band coincidence detectors; such neurons respond equally well to sounds with a particular ITD and its phase equivalents and are said to be phase ambiguous. Higher-order neurons with broad frequency tuning are unambiguously selective for single ITDs in response to broad-band sounds and show little or no response to phase equivalents. Selectivity for single ITDs is thought to arise from the convergence of parallel, narrow-band frequency channels that originate in the cochlea. ITD tuning to variable bandwidth stimuli was measured in higher-order neurons of the owl’s inferior colliculus to examine the rules that govern the relationship between frequency channel convergence and the resolution of phase ambiguity. Ambiguity decreased as stimulus bandwidth increased, reaching a minimum at 2–3 kHz. Two independent mechanisms appear to contribute to the elimination of ambiguity: one suppressive and one facilitative. The integration of information carried by parallel, distributed processing channels is a common theme of sensory processing that spans both modality and species boundaries. The principles underlying the resolution of phase ambiguity and frequency channel convergence in the owl may have implications for other sensory systems, such as electrolocation in electric fish and the computation of binocular disparity in the avian and mammalian visual systems.
Resumo:
Three-dimensional (3D) domain-swapped proteins are intermolecularly folded analogs of monomeric proteins; both are stabilized by the identical interactions, but the individual domains interact intramolecularly in monomeric proteins, whereas they form intermolecular interactions in 3D domain-swapped structures. The structures and conditions of formation of several domain-swapped dimers and trimers are known, but the formation of higher order 3D domain-swapped oligomers has been less thoroughly studied. Here we contrast the structural consequences of domain swapping from two designed three-helix bundles: one with an up-down-up topology, and the other with an up-down-down topology. The up-down-up topology gives rise to a domain-swapped dimer whose structure has been determined to 1.5 Å resolution by x-ray crystallography. In contrast, the domain-swapped protein with an up-down-down topology forms fibrils as shown by electron microscopy and dynamic light scattering. This demonstrates that design principles can predict the oligomeric state of 3D domain-swapped molecules, which should aid in the design of domain-swapped proteins and biomaterials.